首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The explosive progress in nanoscience has led to uncovering and exploring numerous physical phenomena occurring at nanoscale, especially when metal nanostructures are involved so that optical fields and electronic oscillations can be resonantly coupled. The latter is the subject of (nano) plasmonics with implications extending from subwavelength waveguiding to localized field enhancements. In this review paper, we consider making use of various phenomena related to multiple scattering of surface plasmons (SPs) at periodically and randomly (nano) structured metal surfaces. After reviewing the SP waveguiding along channels in nanostructured areas exhibiting band‐gap and localization effects, SP‐driven field enhancement in random structures and plasmonic fractal drums is discussed in detail. SP manipulation and waveguiding using periodic nanostructures on the long‐wavelength side of the band gap is also considered.  相似文献   

2.
Usually nonlinear response of metals is neglected in the study of plasmonic waveguiding structures. Recent prediction of strong third-order optical response of metals due to ponderomotive forces opens up novel possibilities for utilizing this effect in the design of active plasmonic devices. We discuss the possibility of implementation of nonlinear response of metals in the design of plasmonic coupler. We analyze the structure and dispersions of linear and nonlinear guided plasmonic modes of two coupled thin metallic films and predict bifurcations of symmetry breaking.  相似文献   

3.
We present a comprehensive numerical investigation on the guiding properties of a nanotube based hybrid plasmonic waveguide, which comprises a high-index dielectric nanotube placed above a metallic substrate. It is shown that the incorporation of the nanotube offers additional freedom for tuning the optical performance of the hybrid plasmonic structure when compared to the traditional nanowire based hybrid counterparts, which enables further reduction of the propagation loss and enhanced field confinement inside the gap region, while simultaneously maintaining a subwavelength mode size at appropriate geometries. Systematic geometric parameters mapping considering the size of the nanotube and the dimension of the gap reveals that the tradeoff between the confinement and loss could be further balanced through optimizing key physical parameters. These investigations potentially lay the groundwork for the further applications of nanotube based hybrid structures.  相似文献   

4.
In this study, we numerically synthesize a two-dimensional metallic nanostructure consisting of a Au half-space and two separate Ag elliptical cylinders by the simulated annealing (SA) method. The simulated nanostructure is so designed that the surface plasmon polariton (SPP) and the localized surface plasmon (LSP) are simultaneously excited at their common resonant wavelength (535 nm), leading to the enhancement of emission of a nearby dipole source. This enhancement effect is more significant than that of the case where only one of the SPP and LSP is excited. In numerically synthesizing a metallic nanostructure, we try to maximize both the downward emission (in the direction away from the metallic structure) and the emission efficiency. A cost function is defined as some combination of the downward emission and the emission efficiency. We adjust the simulated structure by SA to minimize the cost function at a designated resonant wavelength, and calculate and analyze the spectra of downward emission and emission efficiency for the optimal structure. Other structures are also investigated for comparison. From numerical simulations, it is demonstrated that the enhancement of dipole emission is better for optimization at wavelength 535 nm than at other wavelengths. Note that the downward emission and the emission efficiency can reach maxima almost simultaneously when the SPP and the LSP couple effectively at a common resonant wavelength. This implies that the lighting efficiency of green light-emitting diodes (LEDs) can be increased by the coupling effect at a common resonant wavelength of SPP and LSP.  相似文献   

5.
宋国峰  张宇  郭宝山  汪卫敏 《物理学报》2009,58(10):7278-7281
对单模面发射半导体激光器的研究随着其应用的不断扩展而引起了人们的广泛的重视,应用多种方法可以提高其输出功率并改善其模式抑制比.利用金属表面等离子体纳米结构调制的方法可以获得单模面发射激光器输出功率的提高,理论计算表明这种方法增强效应可达近50%. 关键词: 表面等离子体 单模面发射激光器 模式选择  相似文献   

6.
This paper reports a concept of micromechanical sensing of environmental condition using the surface plasmon resonance phenomenon. We calculate the resolution in the cantilever bending monitoring using the transfer matrix numerical method. We show that the cantilever deflection can be monitored with a resolution in the nanometer range. The SPs resonance behavior of the multilayer stack in the case of gold cantilever is discussed. We believe that this concept permits a low cost and ease of fabrication for a large bi-dimensional array of sensors with an enhanced signal-to-noise ratio.  相似文献   

7.
设计了一种包含圆柱形纳米线、空气间隙和半圆顶金属脊结构的低阈值纳米激光器.通过有限元法对激光器的模式特性、品质因数以及增益阈值进行数值计算,并研究了这些特性因子随结构几何参数(空气间隙、金属脊宽度和纳米线半径)的变化情况.结果表明,通过对参数进行调整,激光器的性能得到了显著优化.在最优参数下,增益阈值可达0.47μm-1,传输损耗仅为0.018.本文设计的纳米激光器能够实现低阈值的亚波长激射和低损耗传输,在生物医学、光通信等领域有广泛的应用前景,可为小型化和集成化的纳米设备提供技术支持.  相似文献   

8.
杨鹏飞  古英  龚旗煌 《中国物理 B》2008,17(10):3880-3893
A theoretical investigation on the surface plasmon polariton in a gold cylindrical nanocable is presented. By solving a complete set of Maxwell's equations in the nanocable (with a 50 nm radius gold nanocore, 10-300 nm silica layer, and 30-200nm gold nanocladding), the dispersion relations on the optical frequency and on the silica thickness are discussed. When the silica thickness varies from 50 to 250 nm, at a fixed waveleltgth, the strong coupling between the gold nanocore and the nanocladding leads to a symmetric-like surface mode and an antisymmetric-like surface mode in the nanocable. The transformation between the surface mode and the waveguide mode in this structure is also investigated. The results will be helpful for understanding the surface waves in the subwavelength structures.  相似文献   

9.
In this paper we have proposed a technique based on image analysis of the surface plasmon excitation at the metal-dielectric interface of inside silver coated fused silica capillary glass tube. Chemical deposition technique has been used for the deposition of silver. Angular interrogation in Kretschmann-like configuration is realized by non-radial transverse illumination of this cylindrical dielectric-metal-dielectric (C-DMD) structure with a He–Ne laser source. Here the uniform film deposition of the inside surface of the capillary is not that crucial except within the transversely illuminated working area concerned. Moreover, the proposed technique has been validated experimentally for sensing different aqueous dielectric samples inserted inside the tube.  相似文献   

10.
11.
Guided submillimeter radiation (=118.8 m) has been focussed by inserting a cylinder lens into the freely propagating beam in front of the incoupling prism. The beam profile at the focal spot has been determined experimentally, the results agree with theoretical predictions. The optical quality of the focus is good.  相似文献   

12.
Plasmonic chain waveguide by employing an array of silver nanoshell with dielectric holes that interact with incident plane wave of transverse magnetic polarization are simulated by use of the finite element method. Results show that the working wavelength of the system is highly tunable by using the nanoshell instead of solid particles and by varying the dielectric constant of the core. Besides, chain waveguides that are operated on resonant multipolar modes can provide longer propagation lengths, which is beyond what is maximally achieved by conventional solid particle chains.  相似文献   

13.
Hybrid plasmon waveguides, respectively, with metamaterial substrate and dielectric substrate are investigated and analyzed contrastively with a numerical finite element method. Basic properties, including propagation length Lp, effective mode area Aeff, and energy distribution, are obtained and compared with waveguide geometric parameters at 1.55 gin. For the waveguide with metamaterial substrate, propagation length Lp increases to several tens of microns and effective mode area Aeff is reduced by more than 3 times. Moreover, the near field region is expanded, leading to potential applications in nanophotonics. Therefore, it could be very helpful for improving the integration density in optical chips and developing functional components on a nanometer scale for all optical integrated circuits.  相似文献   

14.
A high performance sub-wavelength metallic grating coupled surface plasmon resonance (SWMGCSPR) sensor with metal and porous composite layer is proposed. Rigorous coupled-wave analysis (RCWA) is conducted to prove the design feasibility, characterize the sensor's performance and determine geometric parameters of the structure, which is also employed to compute the electromagnetic (EM) field distributions at the resonant wavelengths. Parameters of sensing platform are optimized to achieve the best performance of the SPR sensor. Obtained results reveal that the proposed structure can excite SPR with negative diffraction order of SWMG. Both wavelength and angular sensitivities are greatly enhanced because surface plasmon wave (SPW) exhibits a large penetration depth which will enlarge the distance of interactions between SP and analytes. The detection sensitivities and quality parameters are estimated to be 700 nm/RIU and 509°/RIU with full width at half maximum (FWHM) less than 2.5 nm using the same optimized structure.  相似文献   

15.
Hydrothermally processed highly photosensitive ZnO nanorods based plasmon field effect transistors (PFETs) have been demonstrated utilizing the surface plasmon resonance coupling of Au and Pt nanoparticles at Au/Pt and ZnO interface. A significantly enhanced photocurrent was observed due to the plasmonic effect of the metal nanoparticles (NPs). The Pt coated PFETs showed Ion/Ioff ratio more than 3 × 104 under the dark condition, with field-effect mobility of 26 cm2 V−1 s−1 and threshold voltage of −2.7 V. Moreover, under the illumination of UV light (λ = 350 nm) the PFET revealed photocurrent gain of 105 under off-state (−5 V) of operation. Additionally, the electrical performance of PFETs was investigated in detail on the basis of charge transfer at metal/ZnO interface. The ZnO nanorods growth temperature was preserved at 110 °C which allowed a low temperature, economical and simple method to develop highly photosensitive ZnO nanorods network based PFETs for large scale production.  相似文献   

16.
郑俊娟  孙刚 《物理学报》2005,54(6):2751-2757
通过观察金属底板中周期地嵌入电介质球壳的体系的光学吸收性质,研究了表面等离子激元 以及与其他电磁模式的耦合特性.在这种周期结构的金属表面,发现存在两种响应频率,分 别对应于表面等离子激元模式和金属中的电介质腔体模式.在这些响应频率上,可观察到与 它们相对应的吸收峰.由于金属的表面模式不能与平面入射光直接耦合,而腔体模式与平面 入射光和表面等离子激元模式的耦合一般较弱,因而通常情况下这些吸收峰的峰值有限.然 而,通过调整体系中的某些参数,可以使腔体模式和表面模式的频率非常接近,这时二者之 间的耦合强度将大大提高.此时,在相应的频率附近可观察到极强的吸收峰.详细地研究了介 质球壳的物理和几何参数对此共振吸收的影响. 关键词: 腔体模式 表面等离子体模式 共振吸收  相似文献   

17.
We present finite-difference time-domain (FDTD) analysis results of light absorption enhancement factor dependence on the profile shape of nano-gratings etched into the surfaces of metal-semiconductor-metal photodetector (MSM-PD) structures. The MSM-PDs patterned by nano-gratings are optimized geometrically, improving the light absorption near the design wavelength through plasmon-assisted electric field concentration effects. FDTD simulation results show about 50 times light absorption enhancement prediction for 850 nm light due to improved optical signal propagation through the nano-gratings in comparison with the conventional MSM-PD designs employing only a subwavelength aperture. We also report on the nano-grating profile shapes obtained typically in our experiments using focused ion-beam lithography and discuss the dependency of light absorption enhancement on the geometric parameters of nano-gratings inscribed into MSM-PDs.  相似文献   

18.
We report here experiments on surface plasmon excitation and propagation along corrugated and smooth aluminum surface in the terahertz frequency range. Narrowband plasmon excitation by a subpicosecond terahertz pulse is shown to be a transient process and plasmon propagation sufficiently changes its measured time profile. Plasmon propagation during its excitation and detection changes measured signal. We suggest to use parameters T (plasmon duration) and τ (plasmon lifetime) to describe the narrowband THz plasmon pulse. Plasmon duration and lifetime were defined and plasmon propagation lengths on smooth and corrugated surface were measured. Plasmon propagation length on flat surface turned out to be much smaller than it is predicted by the Drude model.  相似文献   

19.
Adriana Rueda 《Surface science》2009,603(3):491-3317
Evaporated gold films have a smooth interface with their substrate and a rougher top surface. We investigate the optical response of such a film by excitation of surface plasmons both on the rough and on the smooth side. The smooth side, although polycrystalline, has an optical response that is very similar to a monocrystalline surface. The film can be modeled as two-layers with significantly different optical constants. For investigations on thin dielectric films though, this heterogeneity introduces only a negligible error.  相似文献   

20.
郑俊娟  孙刚 《物理学报》2005,54(11):5210-5217
研究了金属板的上下表面附近各放置一层按周期排列的电介质小球的体系的光学性质.用多重散射法计算的结果显示金属上侧的周期性排列的电介质小球可诱发金属-电介质表面上的表面等离子激元.这些表面等离子激元的存在可通过非常尖锐的吸收峰反映出来.对于无限厚的金属板,这些吸收峰的峰值位置主要与电介质小球的周期有关,且与解析理论符合得相当好.在有限厚度的金属板中,金属板的两侧表面会产生对称和反对称的两种表面等离子激元,从而使原来在无限厚的金属表面上所出现的单一频率的表面等离子激元劈裂为双频率.由于对称和反对称的表面等离子激元模式在金属板的两侧表面均有相当强的电磁场,因而它们可导致强的电磁波穿透.通过在金属板的下侧加入玻璃球层可将表面等离子激元的电磁场引导出金属,并产生透射波.用多重散射法计算的结果证实,在此体系中由表面等离子激元所引起的透射可达到相当的强度. 对该体系中的物理机理进行了详细分析,从而能够通过调节该体系中的一些参数来控制表面等离子激元出现的频率,使强吸收峰或强透射峰出现在所希望的频率上. 关键词: 表面等离子激元 吸收谱 透射  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号