首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a theoretical study of the band structure of collective modes of binary ferromagnetic systems formed by a submicrometric periodic array of cylindrical cobalt nanodots partially or completely embedded into a permalloy ferromagnetic film is performed. The binary ferromagnetic systems studied are two-dimensional periodic, but they can be regarded as three-dimensional, since the magnetization is non uniform also along the z direction due to the contrast between the saturation magnetizations of the two ferromagnetic materials along the thickness. The dynamical matrix method, a finite-difference micromagnetic approach, formulated for studying the dynamics in one-component periodic ferromagnetic systems is generalized to ferromagnetic systems composed by F ferromagnetic materials. It is then applied to investigate the spin dynamics in four periodic binary ferromagnetic systems differing each other for the volume of cobalt dots and for the relative position of cobalt dots within the primitive cell. The dispersion curves of the most representative frequency modes are calculated for each system for an in-plane applied magnetic field perpendicular to the Bloch wave vector. The dependence of the dispersion curves on the cobalt quantity and position is discussed in terms of distribution of effective “surface magnetic charges” at the interface between the two ferromagnetic materials. The metamaterial properties in the propagative regime are also studied (1) by introducing an effective magnetization and effective “surface magnetic charges” (2) by describing the metamaterial wave dispersion of the most representative mode in each system within an effective medium approximation and in the dipole-exchange regime. It is also shown that the interchange between cobalt and permalloy does not necessarily lead to an interchange of the corresponding mode dispersion. Analogously to the case of electromagnetic waves in two-dimensional photonic crystals, the degree of localization of the localized collective modes is expressed in terms of an energy concentration factor.  相似文献   

2.
We study the optical absorption of arrays of quantum dots and antidots in a perpendicular homogeneous magnetic field. The electronic system is described quantum mechanically using a Hartree approximation for the mutual Coulomb interaction of the electrons. The evolution of the absorption is traced from the homogeneous to the strongly modulated case identifying the ensuing collective modes, the magnetoplasmons, and their correlations with inherent length scales of the system.  相似文献   

3.
The diffraction and refraction of light beam in optical periodic structures can be determined by the photonic band-gap structures of spatial frequency. In this paper, by employing the equation governing the nonlinear light propagations in photorefractive crystals, we study the photonic band-gap structures, Bloch modes, and light transmission properties of optically induced planar waveguide arrays. The relationship between the photonic band-gap structures and the light diffraction characteristics is discussed in detail. Then the influence of the parameters of planar waveguide arrays on the band-gaps structures, Bloch modes, and linear light transmissions is analyzed. It is revealed that the linear light transmission properties of waveguide arrays are tightly related to the diffraction relationships determined by band-gap structures. And the Bloch modes corresponding to different transmission bands can be excited by different excitation schemes. Both the increases of the intensity and the period of the array writing beam will lead to the broadening of the forbidden gaps and the concentration of the energy of the Bloch modes to the high-index regions. Furthermore, the broadening of the forbidden gaps will lead to separation and transition between the Bloch modes of neighboring bands around the Bragg angle. Additionally, with the increase of the intensity of the array writing beams, the influences from light intensity will tend to be steady due to the saturation of the photorefractive effect. Supported by the Youth for Northwestern Polytechnical University (NPU) Teachers Scientific and Technological Innovation Foundation, the NPU Foundation for Fundamental Research, and the Doctorate Foundation of NPU (Grant No. CX200514)  相似文献   

4.
Vortex configurations in superconducting films with regular arrays of antidots (holes) are calculated within the nonlinear Ginzburg-Landau theory. In addition to the well-established matching phenomena, we predict (i) the nucleation of giant-vortex states between the antidots, (ii) the combination of giant- and multivortices at rational matching fields, and (iii) for particular values of the vorticity, symmetry imposed creation of vortex-antivortex configurations.  相似文献   

5.
In the framework of the singlet-correlated motion of holes over oxygen sites in CuO2 layers, a formula for the dynamic spin susceptibility has been derived taking into account the strong correlation between the magnetizations of the spins of the collective holes and localized moments on copper sites. The calculated behavior of the imaginary part of the susceptibility as a function of the frequency and wave vector is consistent with the available experimental data on the inelastic neutron scattering. The plot of the dispersion of the collective spin modes over the entire Brillouin zone is proposed.  相似文献   

6.
The spaser offers an opportunity to achieve coherent optical sources at nanometer scales due to the extreme confinement of optical fields. However, achievement of spasers with directional propagation in the visible wavelength region remains a challenge thus far, owing to the unique optical feedback mechanism and large dissipative losses of the metal cavity. Here, we experimentally demonstrate for the first time a spaser showing highly directional emission in the visible by using a periodic subwavelength hole array perforated in a metal film, which function as plasmonic nanocavities, along with an organic laser dye to supply gain. The lasing occurs in the red wavelength region and shows a single mode. It is suggested that the optical feedback for spasing is provided by the SPP–Bloch wave, which is supported by the fact that no spasing was attained in aperiodic holes as well as in periodic holes that do not support the SPP–Bloch wave at the spasing wavelength.  相似文献   

7.
We develop a general theory for the dynamics of multi-photon processes in semiconductor heterostructures. The resulting effective multi-band Bloch equations describe the dynamics of electrons in the reduced set of bands between which the optical pulses induce quasi-resonant transitions. The model is specialized to the case of interfering one- and two-photon transitions across the band gap. The withdrawn bands are included as intermediate states for an effective interaction that is quadratic in the electromagnetic fields. The benefit of this perturbative approach is to lead to equations of motion for slowly varying quantities only, in the spirit of the rotating wave approximation. Coulomb interaction and relaxation can also easily be included. Finally, a general expression for the time dependent polarization current that is consistent with the approximations involved by the effective multi-band Bloch equations is derived.  相似文献   

8.
We calculate the Raman response contribution due to soft collective modes, finding a strong dependence on the photon polarizations and on the characteristic wave vectors of the modes. We compare our results with recent Raman spectroscopy experiments in underdoped cuprates, La2-xSrxCuO4 and (Y1.97Ca0.3)Ba2CuO6.05, where anomalous low-energy peaks are observed, which soften upon lowering the temperature. We show that the specific dependence on doping and on photon polarizations of these peaks can naturally arise from charge collective excitations at finite wavelength.  相似文献   

9.
Diluted arrays of elliptical antidots have been fabricated by optical lithography, electron beam lithography and plasma etching on amorphous Co74Si26 magnetic films with a well-defined uniaxial anisotropy. The magnetic behavior of two identical antidot arrays but with different hole depth in comparison with film thickness has been studied by transverse magneto-optical Kerr effect. Significant differences appear in the coercivity depending on whether the magnetic film is completely perforated or not, indicating a much more effective domain wall pinning process when the depth of the holes is smaller than the magnetic film thickness.  相似文献   

10.
We numerically investigate the surface plasmon resonance (SPR) mode patterns in periodic silver-shell nanopearl arrays and its dimer arrays with the core relative permittivities filled inside the dielectric holes (DHs) by means of finite element method with three-dimensional calculations. Numerical results of resonant wavelengths corresponding to the effects of different period of unit cells, radii of DHs, illumination wavelengths, field propagation, electrical field stream lines, charge distributions, charge densities, half- body charge densities, and the DH core relative permittivities of periodic silver-shell nanopearls are also reported. It can be seen that the periodic silver-shell nanopearl arrays and its dimer arrays with DHs exhibit tunable SPR modes corresponding to the bonding and anti-bonding modes, respectively, that are not observed for the solid silver cases with the same volume. These results are crucial in designing localized SPR sensors and other optical devices based on periodic metal nanoparticle array structures.  相似文献   

11.
The collective plasmon modes of s semiconductor superlattices consisting of alternating layers of electrons and holes or alternating layers of electrons with different densities are investigated. For wells widely separated in space, such that Bloch wavefunction overlap between wells is negligible, we find optical-like and acoustical-like plasmon modes propagating along the superlattice direction. Perpendicular to the superlattice direction, the acoustic mode (ω~q) recently observed by Olego and Pinczuk8 is found to be split into two acoustic branches.  相似文献   

12.
Surface-bound modes in metamaterials forged by drilling periodic hole arrays in perfect-conductor surfaces are investigated by means of both analytical techniques and rigorous numerical solution of Maxwell's equations. It is shown that these metamaterials cannot be described in general by local, frequency-dependent permitivities and permeabilities for small periods compared to the wavelength, except in certain limiting cases that are discussed in detail. New related metamaterials are shown to exhibit exciting optical properties that are elucidated in the light of our simple analytical approach.  相似文献   

13.
We show that subwavelength diffracted wave fields may be managed inside multilayered plasmonic devices to achieve ultra-resolving lensing. For that purpose we first transform both homogeneous waves and a broad band of evanescent waves into propagating Bloch modes by means of a metal/dielectric (MD) superlattice. Beam spreading is subsequently compensated by means of negative refraction in a plasmon-induced anisotropic medium that is cemented behind. A precise design of the superlens doublet may lead to nearly aberration-free images with subwavelength resolution in spite of using optical paths longer than a wavelength.  相似文献   

14.
汪丽春  邓立  崔妮  钮月萍  龚尚庆 《中国物理 B》2010,19(1):17303-017303
We investigate the transmission properties of a normally incident TM plane wave through metal films with periodic parabolic-shaped grooves on single and double surfaces using the finite-difference-time-domain method. Nearly zero transmission efficiency is found at wavelengths corresponding to surface plasmon excitation on a flat surface in the case where the single surface is grooved. Meanwhile, resonant excitation of surface plasmon polariton (SPP) Bloch modes leads to a strong transmission peak at slightly larger wavelengths. When the grating is grooved on double surfaces, the transmission enhancement can be dramatically improved due to the resonant tunnelling between SPP Bloch modes.  相似文献   

15.
We investigated transport in Nb-InAs hybrid structures in perpendicular magnetic fields up to the quantum Hall regime. Due to the high contact quality of our samples, Andreev reflection dominates the transport properties in a range of experimental parameters. Our experiments were performed on periodic arrays of Nb filled stripes or antidots in an InAs-based 2DEG. According to geometry and field strength we observe the following effects: At low fields, up to a few flux quanta per unit cell, we find phase-coherent behavior, such as flux-periodic oscillations. At slightly higher fields, the Andreev reflection probability is determined by induced superconductivity in the 2DEG, which is gradually suppressed by an increasing magnetic field. In the arrays of Nb filled antidots we find that the commensurability peaks are suppressed since Andreev reflection restores regular motion in velocity space. Due to the high critical field of the Nb nanostructures, we can also enter the edge state regime, where we observe a pronounced increase of the amplitude of 1/B-periodic magnetoresistance oscillations. The latter can be traced to an enhanced backscattering of Andreev-reflected edge channels, which contain both electrons and holes. PACS 74.45.+c; 73.43.Qt; 73.63.-b  相似文献   

16.
In this work, we highlight our recent progress in the synthesis and characterization of functional nanomaterials based on Fe–Pd ferromagnetic alloys by means of template-assisted deposition techniques employing highly ordered nanoporous alumina membranes, such as ordered arrays of nanowires and antidots thin films. Special attention is paid on their basic magnetic properties, such as coercivity, remanence and magnetic anisotropy, and their dependence on the microstructure and morphological parameters of the ordered arrays.  相似文献   

17.
黄俨  张巍  王胤  黄翊东  彭江得 《物理学报》2009,58(3):1731-1737
通过石英圆柱模型,理论研究了小芯径光子晶体光纤中混合声波模式的色散、模式耦合以及声光相互作用,理论计算出了布里渊散射增益系数谱的双峰结构及其随抽运光波长和温度的演化规律. 理论分析表明光子晶体光纤中布里渊散射增益系数谱的双峰结构源于小芯径光子晶体光纤中混合声波模式之间的模式耦合. 通过温度改变导致的材料参数变化对声波模式色散特性的影响,特别是声波模式耦合点的移动,解释了双峰结构随外界温度的变化规律. 并且,通过理论计算与实验结果的对比讨论了石英圆柱模型的局限性和适用范围. 关键词: 布里渊散射 声光相互作用 模式耦合 光子晶体光纤  相似文献   

18.
The dynamical properties of strongly coupled charged-particle bilayers are investigated by molecular dynamics (MD) simulation and theoretical analysis. The spectra of the current correlation functions show the existence of two (in-phase and out-of-phase) longitudinal and two (in-phase and out-of-phase) transverse collective modes. The out-of-phase modes possess finite frequencies at wave numbers k-->0, confirming the existence of the predicted long-wavelength energy gap in the bilayer system. A theoretical model based on an extended Feynman ansatz for the dynamical structure functions provides predictions on the strength of the collective modes that are verified by the MD experiment.  相似文献   

19.
We investigate the thermoelectric properties of one-dimensional (1D) graphene antidot arrays by nonequilibrium Green?s function method. We show that by introducing antidots to the pristine graphene nanoribbon the thermal conductance can be reduced greatly while keeping the power factor still high, thus leading to an enhanced thermoelectric figure of merit (ZT). Our numerical results indicate that ZT values of 1D antidot graphene arrays can be up to unity, which means the 1D graphene antidot arrays may be promising for thermoelectric applications.  相似文献   

20.
Theoretical formalism for DC‐field polaron dynamics is extended to the dynamics of a 1D Holstein polaron in an external AC electric field using multiple Davydov trial states. Effects of carrier–phonon coupling on detuned and resonant scenarios are investigated for both phase and nonzero phase. For slightly off‐resonant or detuned cases, a beat between the usual Bloch oscillations and an AC driving force results in super Bloch oscillations, that is, rescaled Bloch oscillations in both the spatial and the temporal dimension. Super Bloch oscillations are damped by carrier–phonon coupling. For resonant cases, if the carrier is created on two nearest‐neighboring sites, the carrier wave packet spreads with small‐amplitude oscillations. Adding carrier–phonon coupling localizes the carrier wave packet. If an initial broad Gaussian wave packet is adopted, the centroid of the carrier wave packet moves with a certain velocity and with its shape unchanged. Adding carrier–phonon coupling broadens the carrier wave packet and slows down the carrier movement. Our findings may help provide guiding principles on how to manipulate the dynamics of the super Bloch oscillations of carriers in semiconductor superlattice and optical lattices by modifying DC and AC field strengths, AC phases, and detuning parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号