首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate plasmonic modulators with gain material to be implemented as ultra-compact and ultra-fast active nanodevices in photonic integrated circuits. We analyze metal–semiconductor–metal (MSM) waveguides with InGaAsP-based active material layers as ultra-compact plasmonic modulators. The modulation is performed by changing the gain of the core, that results in different transmittance through the waveguides. A MSM waveguide enables high field localization and therefore high modulation speed. Bulk semiconductor, quantum wells and quantum dots, arranged in either horizontal or vertical layout, are considered as the core of the MSM waveguide. Dependences on the waveguide core size and gain values of various active materials are studied. The designs consider also practical aspects like n- and p-doped layers and barriers in order to obtain close to reality results. The effective propagation constants in the MSM waveguides are calculated numerically. Their changes in the switching process are considered as a figure of merit. We show that a MSM waveguide with electrical current control of the gain incorporates compactness and deep modulation along with having a reasonable level of transmittance.  相似文献   

2.
The transmission and tuning properties of a cross-shaped plasmonic crystal based on periodic metal–semiconductor–metal (MSM) structures have been investigated in the terahertz (THz) regime. According to the mode analysis, we find that the different resonance modes in the plasmonic crystal show the different changes when this device is actively controlled by the carrier injection of the MSM structures. The longitudinal modes disappear, while the horizontal mode moves to a higher frequency. The former leads to an intensity modulation at 0.5 THz and 1.1 THz when the groove depth h = 60 μm, and the later leads to a band blue-shift from 1.325 THz to 1.38 THz. These results will be applied to THz modulation and tunable filtering.  相似文献   

3.
The performance of a CMOS-compatible electro-optic Mach-Zehnder plasmonic modulator is investigated using electromagnetic and carrier transport simulations. Each arm of the Mach-Zehnder device comprises a metal–insulator–semiconductor–insulator–metal (MISIM) structure on a buried oxide substrate. Quantum mechanical effects at the oxide/semiconductor interfaces were considered in the calculation of electron density profiles across the structure, in order to determine the refractive index distribution and its dependence on applied bias. This information was used in finite element simulations of the electromagnetic modes within the MISIM structure in order to determine the Mach-Zehnder arm lengths required to achieve destructive interference and the corresponding propagation loss incurred by the device. Both inversion and accumulation mode devices were investigated, and the layer thicknesses and height were adjusted to optimise the device performance. A device loss of <8 dB is predicted for a MISIM structure with a 25 nm thick silicon layer, for which the device length is <3 μm, and <5 dB loss is predicted for the limiting case of a 5 nm thick silicon layer in a 1.2 μm long device: in both cases, the maximum operating voltage is 7.5 V.  相似文献   

4.
A new type and easy-to-fabricate metal–insulator–metal(MIM) waveguide reflector based on Sagnac loop is designed and investigated.The transfer matrix theoretical model for the transmission of electric fields in the reflector is established,and the properties of the reflector are studied and analyzed.The simulation results indicate that the reflectivity strongly depends on the coupling splitting ratio determined by the coupling length.Accordingly, different reflectivities can be realized by varying the coupling length.For an optimum coupling length of 750 nm, the 3-dB reflection bandwidth of the MIM waveguide reflector is as wide as 1.5 μm at a wavelength of 1550 nm, and the peak reflectivity and isolation are 78%and 23 dB, respectively.  相似文献   

5.
A surface-plasmon-polariton (SPP) wavelength splitter based on a metal–insulator–metal waveguide with multiple teeth is proposed. Using the transfer-matrix method, a plasmonic band gap is identified in the multiple-toothed structure, and the splitting wavelength of the SPP splitter can be easily adapted by adjusting the widths of the teeth and the gaps. The proposed wavelength splitter is further verified through finite-difference time-domain (FDTD) simulations, in which SPPs with incident wavelengths of 756 nm and 892 nm are successfully split and guided in opposite directions in the waveguide, with extinction ratios of 30 dB and 29 dB, respectively.  相似文献   

6.
7.
8.
9.
X. Gao  L. Ning 《Optik》2012,123(15):1326-1328
The transmission line theory (TLT) and the finite difference time domain (FDTD) method are applied to investigate the optical transmission characteristics of the metal–dielectric–metal (MDM) plasmonic waveguide coupled with a stub structure. The transmission rate of the FDTD simulation results demonstrates periodically variation from less than 1% to more than 92% as a function of the length of the stub, which fits well with the results of TLT. Furthermore, the transmission also performs a periodically switch distribution with the change of the refractive index of the stub from 1.0 to 2.0 gradually. Both methods are adopted for modulating the superposition phase of the interference between the reflected surface plasmon polaritons (SPPs) wave from the end of the stub and the passing SPPs wave in the waveguide, which can be interpreted as the principle mechanism for the optical switch effect of the MDM waveguide with a stub structure.  相似文献   

10.
《Current Applied Physics》2014,14(3):306-311
Physical effects arising due to change of configuration of a MIS system from planar to cylindrical, are theoretically analyzed. Attention is paid to the voltage partitioning and all the components of tunneling current. A simple simulation model is developed enabling prediction of the band diagram details and calculation of the currents. The trends expected with decreasing system radius are elucidated. Cylindrical geometry can be faced with when quantum wire is used as an electron emitter. Similar form may also be roughly attributed to an edge region of conventional MIS capacitors.  相似文献   

11.
Interaction mechanism of hydrogen with GaN metal–insulator–semiconductor (MIS) diodes is investigated, focusing on the metal/semiconductor interfaces. For MIS Pt-GaN diodes with a SiO2 dielectric, the current–voltage (IV) characteristics reveal that hydrogen changes the conduction mechanisms from Fowler–Nordheim tunneling to Poole–Frenkel emission. In sharp contrast, Pt-SixNy-GaN diodes exhibit Poole–Frenkel emission in nitrogen and do not show any change in the conduction mechanism upon exposure to hydrogen. The capacitance–voltage (CV) study suggests that the work function change of the Schottky metal is not responsible mechanism for the hydrogen sensitivity.  相似文献   

12.
Perovskite photoconductor-type photodetector with metal–semiconductor–metal(MSM) structure is a basic device for photodetection applications. However, the role of electrode interlayer in MSM-type perovskite devices is less investigated compared to that of the pin diode structure. Here, a systematic investigation on the influence of phenyl-C_(61)-butyric acid methyl ester(PCBM) and indene-C_(60) bisadduct(ICBA) interfacial layers for MSM perovskite photodetectors is reported.It is found that the fullerene-based interlayer significantly enhances the photocurrent of the MSM photodetectors. On one hand, the PCBM interlayer is more suitable for CH_3 NH_3 PbI_3 photodetector, with the responsivity two times higher than that of the device with ICBA interlayer. The ICBA layer, on the other hand, becomes more effective when the band gap of perovskite is enlarged with bromine composition, denoted as CH_3 NH_3 Pb(I_(1-x)Br_x)_3(0 ≤ x ≤1). It is further found that the specific detectivity of photodetectors with ICBA interlayer becomes even higher than those with PCBM when the bromine compositional percentage reaches 0.6(x 0.6).  相似文献   

13.
We introduce a technique capable of focusing electromagnetic (EM) waves through plasmonic nanoslits symmetrically arranged along the indented semi-circular surface in silver background. The EM transports through the tuning slits in the form of surface plasmon polaritons (SPPs), and gets the required phase retardations to focus at the focal plane. Due to the subwavelength nature of planar metallic lens, we present the rigorous electromagnetic analysis by using two dimensional (2D) finite difference time domain (FDTD) method. These height-modulated slits with uniform width are demonstrated to have unique advantages in beam manipulation. In combination with previous studies, it is expected that our structure with small number of slits could lead to realization of optimum designs of plasmonic nano-lens.  相似文献   

14.
We theoretically investigate the optical properties of one-dimensional photonic crystals composed of two alternating layers, namely a semiconductor film and a metallic one. The nonlocal optical response of the semiconductor is here described by using a resonant excitonic dielectric function, whereas the local response function of the metal film is modeled with Drude formula. We calculate optical spectra of the metal–semiconductor 1D photonic crystal for both s- and p-polarization geometries. In both cases the spectra exhibit a rich resonance structure due to the coupling of size-quantized excitons inside the semiconductor film with light. We show the difference between s- and p-polarization reflectivity as the angle of incidence is increased. In the p-polarization geometry, besides transverse exciton-polariton modes, longitudinal polarization waves are excited producing additional spectral resonances. The spectra become radically different when the frequency corresponding to the minimum of the first photonic pass-band is close to the exciton resonance, since such a frequency is distinct for s- and p-polarized modes. We also show how reflectivity spectra for both polarizations are modified with varying the metal filling fraction which controls the width of the gap below the lowest frequency band.  相似文献   

15.
This paper presents the fabrication and characterization of Al/PVA:n-CdS (MS) and Al/Al2O3/PVA:n-CdS (MIS) diode. The effects of interfacial insulator layer, interface states (N ss ) and series resistance (R s ) on the electrical characteristics of Al/PVA:n-CdS structures have been investigated using forward and reverse bias IV, CV, and G/wV characteristics at room temperature. Al/PVA:n-CdS diode is fabricated with and without insulator Al2O3 layer to explain the effect of insulator layer on main electrical parameters. The values of the ideality factor (n), series resistance (R s ) and barrier height (? b ) are calculated from ln(I) vs. V plots, by the Cheung and Norde methods. The energy density distribution profile of the interface states is obtained from the forward bias IV data by taking into account the bias dependence ideality factor (n(V)) and effective barrier height (? e ) for MS and MIS diode. The N ss values increase from mid-gap energy of CdS to the bottom of the conductance band edge for both MS and MIS diode.  相似文献   

16.
17.
The research on the interaction of the light and microwave and the swift development of fiber communication with high code velocity promotes the advancing of the waveguide modulator. In this paper, we presented a new simple method with very clear physical concept to calculate the highest modulated frequency of waveguide modulator, and we also do a comprehensive research on the characteristics of modulator, and deduce accurate formula and characteristic curves. These researches will be very important to the application of waveguide modulator.  相似文献   

18.
The effects of the size, the position and the shape of the metal cylinder in the slot waveguide on the transmittance properties at the communication wavelength of 1.55 μm are investigated using the finite difference time domain method. Since the surface plasmon polartions excites the local surface plasmon resonance of the metal cylinder, the attenuation in the metal–insulator–metal waveguide is enhanced. Those results provide us with the theoretical foundation for the prediction of the effect of the imperfection in the preparation process on the transmittance properties of the metal–insulator–metal waveguides.  相似文献   

19.
陈海峰 《中国物理 B》2014,(12):554-558
Gate-modulated generation–recombination(GMGR) current IGMGRinduced by the interface traps in an n-type metal–oxide–semiconductor field-effect transistor(n MOSFET) is investigated. The generation current is found to expand rightwards with increasing the reversed drain PN junction bias, and the recombination current is enhanced as the forward drain bias increases. The variations of IGMGRcurves are ascribed to the changes of the electron density and hole density at the interface, NSand PS, under the different drain bias voltages. Based on an analysis of the physical mechanism, the IGMGR model is set up by introducing two coefficients(m and t). The coefficients m and t can modulate the curves widths and peak values. The simulated results under reverse mode and forward mode are obviously in agreement with the experimental results. This proves that this model can be applicable for generation current and recombination current and that the theory behind the model is reasonable. The details of the relevant mechanism are given in the paper.  相似文献   

20.
A single baffle metal–insulator–metal(MIM) waveguide coupled with a semi-circular cavity and a cross-shaped cavity is proposed based on the multiple Fano resonance characteristics of surface plasmon polaritons(SPPs) subwavelength structure. The isolated state formed by two resonators interferes with the wider continuous state mode formed by the metal baffle, forming Fano resonance that can independently be tuned into five different modes. The formation mechanism of Fano resonance is analyzed based on the multimode interference coupled mode theory(MICMT). The finite element method(FEM) and MICMT are used to simulate the transmission spectra of this structure and analyze the influence of structural parameters on the refractive index sensing characteristics. And the transmission responses calculated by the FEM simulation are consistent with the MICMT theoretical results very well. The results show that the figure of merit(FOM)can reach 193 and the ultra-high sensitivity is 1600 nm/RIU after the structure parameters have been optimized, and can provide theoretical basis for designing the high sensitive refractive index sensors based on SPPs waveguide for high-density photonic integration with excellent performance in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号