首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Film characterization based on variable-angle spectroscopic ellipsometry (VASE) is desirable in order to understand physical and optical characteristics of thin films. A number of TiO2 film samples were prepared by ion-assisted electron-beam evaporation with 200-nm nominal thickness, 2.0 Å/s deposition rate and 8 sccm oxygen flow rate. The samples were maintained at 250 °C during the deposition, and annealed in air atmosphere afterwards. As-deposited and annealed films were analyzed by VASE, spectrophotoscopy and X-ray diffractometry. From ellipsometry modeling process, the triple-layer physical model and the Cody–Lorentz dispersion model offer the best results. The as-deposited films are inhomogeneous, with luminous transmittance and band gap of 62.37% and 2.95 eV. The 300 °C and 500 °C are transition temperatures toward anatase and rutile phases, respectively. Increasing temperature results in an increase of refractive index, transmittance percentage and band gap energy. At 500 °C, the highest refractive index and band gap energy are obtained at 2.62 and 3.26 eV, respectively. The developed VASE-modeling process should be able to characterize other TiO2 films, using similar physical and optical modeling considerations.  相似文献   

2.
Nitrogen doped titanium dioxide (TiO2) thin films were deposited by RF magnetron sputtering onto various substrates. The films were prepared in plasma of argon, oxygen, and nitrogen, with varying the nitrogen content, from 0% up to 70%. The resulting TiOx–Ny films were found to consist of cubic TiN osbornite and tetragonal TiO2 rutile phases. Using optical spectroscopy with large spectral range from 350 to 1000 nm, the band gap width was determined and a narrowing of the optical gap from 2.76 to 2.32 eV was observed as a function of the N-content. It was found that the optical properties of the TiOx–Ny layers are influenced by the surface morphology, roughness, surface energy and phase content. The chemical composition, the crystalline structure, the surface morphology and the surface energy were thoroughly studied by the Rutherford backscattering spectrometry (RBS), grazing-angle XRD, atomic force microscopy (AFM) and contact angle measurements (wettability), respectively.  相似文献   

3.
Nanostructured zinc suplhide thin films are successfully deposited on quartz substrates using pulsed laser deposition (PLD) under different argon pressures (0, 5, 10, 15 and 20 Pa). The influence of argon ambience on the microstructural, optical and luminescence properties of zinc sulfide (ZnS) thin films is systematically investigated. The GIXRD data suggests rhombohedral structure for ZnS films prepared under different argon ambience. Self-assembly of grains into well-defined patterns along the y direction is observed in the AFM image of the film deposited under argon pressure 20 Pa. All the films show a blue shift in optical band gap. This can be due to the quantum confinement effect and less widening of conduction and valence band for the films with less thickness and smaller grain size. The PL spectra of the different films are recorded at excitation wavelengths 250 nm and 325 nm and the spectra are interpreted. The PL spectra of the films recorded at excitation wavelength 325 nm show intense yellow emission. The film deposited under an argon pressure of 15 Pa shows the highest PL intensity for excitation wavelength 325 nm. For the PL spectra (excitation at 250 nm), the highest PL intensity is observed for the film prepared under argon free ambience. In our study, 15 Pa is the optimum argon pressure for better crystallinity and intense yellow emission when excited at 325 nm.  相似文献   

4.
Highly transparent titanium oxide thin films were prepared on soda-lime–silica slide glass substrates from a titanium naphthenate precursor. Films prefired at 500 °C for 10 min were finally heat treated at 500 °C for 30 min in air. Crystallinity of the films was analyzed by high resolution X-ray diffraction analysis. A sharp absorption edge of the TiO2 film was observed. The estimated energy band gap for the film is larger than that of single crystal TiO2.  相似文献   

5.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

6.
《Current Applied Physics》2010,10(4):1112-1116
Sb2S3 thin films prepared by electrodeposition on indium tin oxide coated glass substrate were irradiated with 150 MeV Ni11+ ions for various fluence in the range of 1011–1013 ions/cm2. The modifications in the structure, surface morphology and optical properties have been studied as a function of ion fluence. X-ray diffraction (XRD) analysis indicates a shift in the (2 4 0) peak position towards lower diffraction angle and a decrease in grain size with increase in ion fluence. Presence of microcracks due to irradiation induced grain splitting effect has been observed from the SEM micrograph at higher ion fluence. The optical absorbance spectrum revealed a shift in the fundamental absorption edge and the band gap energy increased from a value of 1.63 eV for as-deposited films to 1.80 eV for the films irradiated with 1013 ions/cm2.  相似文献   

7.
Modified chemical bath deposited (MCBD) bismuth sulphide (Bi2S3) thin films’ structural, optical and electrical properties are engineered separately by annealing in air for 1 h at 300 °C and irradiating with 100 MeV Au swift heavy ions (SHI) at 5 × 1012 ions/cm2 fluence. It is observed that the band gap of the films gets red shifted after annealing and irradiation from pristine (as deposited) films. In addition, there is an increase in the grain size of the films due to both annealing and irradiation, leading to the decrease in resistivity and increase in thermoemf of the films. These results were explained in the light of thermal spike model.  相似文献   

8.
This work describes the physical properties of lead iodide (PbI2) thin films with different thicknesses that were deposited on ultrasonically cleaned glass substrates using a thermal evaporation technique at 5×10-6 torr. The initial material was purified by the zone refining technique under an atmosphere of argon gas. XRD analysis of the material demonstrates that the thin films were preferably oriented along the (001) direction. The size of the crystallites was calculated from the Scherer relation and found to be in the range of ~5–10 nm, with higher values being observed for increasing film thicknesses. The optical energy band gaps were evaluated and determined to belong to direct transitions. Because the band gap increased with decreasing film thickness, a systematic blue shift was observed. The surface morphologies of PbI2 films exhibited a clear increase in grain size with increasing film thickness. The photoluminescence and dc conductivity of the thin films are also discussed.  相似文献   

9.
In this study the structural and optical properties of lanthanum-doped BaSnO3 powder samples and thin films deposited on fused silica were investigaed using laser ablation. Under an oxygen pressure of 5×10−4 mbar, phase pure BaSnO3 films with a lattice constant of 0.417 nm and grain size of 21 nm were prepared at 630 °C. The band gap of BaSnO3 powder sample and thin films was calculated to be 3.36 eV and 3.67 eV, respectively. There was a progressive increase in conductivity for thin films of BaSnO3 doped with 0~7 at% of La. The highest conductivity, 9 Scm−1, was obtained for 7 at% La-doped BaSnO3. Carrier concentration, obtained from Burstein-Moss (B-M) shift, nearly matches the measured values except for 3 at% and 10 at% La-doped BaSnO3 thin films.  相似文献   

10.
Electrochromic molybdenum oxide (MoO3) thin films were prepared by electron beam evaporation technique using the dry MoO3 pellets. The films were deposited on glass and fluorine doped tin oxide (SnO2:F or FTO) coated glass substrates at different substrate temperatures like room temperature (RT, 30 °C), 100 °C and 200 °C. The influence of substrate temperature on the structural, surface morphological and optical properties of the films has been studied. The X-ray diffraction analysis showed that the films are having orthorhombic phase MoO3 (α-MoO3) with 〈1 1 0〉 preferred orientation. The laser Raman scattering spectrum shows the polycrystalline nature of MoO3 films deposited at 200 °C. The Raman-active band at 993 cm−1 is corresponding to Mo–O stretching mode that is associated with the unique character of the layered structure of orthorhombic MoO3. Needle—like morphology was observed from the SEM analysis. The energy band gap of MoO3 films was evaluated which lies between 2.8 and 2.3 eV depending on the substrate temperature and substrates. The decrease in band gap value with increasing substrate temperature is owing to the oxygen-ion vacancies. The absorption edge shift shows the coloration effect on the films.  相似文献   

11.
TiO2 thin films were prepared by sol-gel method. The structural investigations performed by means of X-ray diffraction (XRD) technique and scanning electron microscopy (SEM) showed the shape structure at T = 600 °C. The optical constants of the deposited film were obtained from the analysis of the experimentally recorded transmittance spectral data in the wavelength of 200–3000 nm range. The values of some important parameters of the studied films are determined, such as refractive index n and thickness d. In this work, using the transmission spectra, we have calculated the dielectric constant (ε) for four layered TiO2 films; a simple relation is suggested to estimate the third-order optical nonlinear susceptibility χ(3). It has been found that the dispersion data obeyed the single oscillator of the Wemple–DiDomenico model, from which the dispersion parameters and high-frequency dielectric constant were determined. The estimations of the corresponding band gap Eg, χ(3) and ε are 2.57 eV, 0.021 · 10−10 esu and 5.20, respectively.  相似文献   

12.
Nanoparticle TiO2/Ti films were prepared by a sol–gel process using Ti(OBu)4 as raw material, the as-prepared film samples were also characterized by TG-DTA, XRD, TEM, SEM, XPS, DRS, PL, SPS and EFISPS testing techniques. TiO2 nanoparticles experienced two processes of phase transition, i.e. amorphous to anatase and anatase to rutile at the calcining temperature range from 450 to 700 °C. TiO2 nanoparticles calcined at 600 °C had similar composition, structure, morphology and particle size with the internationally commercial P-25 TiO2 particles. Thus, the conclusion that 600 °C might be the most appropriate calcining temperature during the preparation process of nanoparticle TiO2/Ti film photocatalysts could be made by considering the main factors such as the properties of TiO2 nanoparticles, the adhesion of nanoparticle TiO2 film to Ti substrate, the effects of calcining temperature on Ti substrate and the surface characteristics and morphology of nanoparticle TiO2/Ti film for the practice view. The Ti element mainly existed on the nanoparticle TiO2/Ti(3) film calcined at 600 °C as the chemical state of Ti4+, while O element mainly existed as three kinds of chemical states, i.e. crystal lattice oxygen, hydroxyl oxygen and adsorbed oxygen with increasing band energy. Its photoluminescence (PL) spectra with a peak at about 380 nm could be observed using 260 nm excitation, possibly resulting from the electron transition from the bottom of conduction band to the top of valence band. The PL peak position was nearly the same as the onset of its diffuse reflection spectra (DRS) and surface photovoltage spectroscopy (SPS), demonstrating that the effects of the quantum size on optical property were greater than that of the Coulomb and surface polarization. The PL spectra with two peaks related to the anatase and rutile, respectively, could be observed using the excited wavelength of 310 nm. Weak PL spectra could be observed using the excited wavelength of 450 nm, resulting from surface states. In addition, during the experimental process of the photocatalytic degradation phenol, the photocatalytic activity of nanoparticle TiO2/Ti film with three layers calcined at 600 °C was the highest.  相似文献   

13.
In2S3 thin films were deposited onto indium tin oxide-coated glass substrates by chemical spray pyrolysis while keeping the substrates at different temperatures. The structures of the sprayed In2S3 thin films were characterized by X-ray diffraction (XFD). The quality of the thin films was determined by Raman spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy were used to explore the surface morphology and topography of the thin films, respectively. The optical band gap was determined based on optical transmission measurements. The indium sulfide phase exhibited a preferential orientation in the (0, 0, 12) crystallographic direction according to the XRD analysis. The phonon vibration modes determined by Raman spectroscopy also confirmed the presence of the In2S3 phase in our samples. According to SEM, the surface morphologies of the films were free of defects. The optical band gap energy varied from 2.82 eV to 2.95 eV.  相似文献   

14.
Amorphous thin films of Se80xTe20Sbx (x = 0, 6, 12) chalcogenide glasses has been deposited onto pre-cleaned glass substrate using thermal evaporation technique under a vacuum of 10−5 Torr. The absorption and transmission spectra of these thin films have been recorded using UV spectrophotometer in the spectral range 400–2500 nm at room temperature. Swanepoel envelope method has been employed to obtain film thickness and optical constants such as refractive index, extinction coefficient and dielectric constant. The optical band gap of the samples has been calculated using Tauc relation. The study reveals that optical band gap decreases on increase in Sb content. This is due to decrease in average single bond energy calculated using chemical bond approach. The values of urbach energy has also been computed to support the above observation. Variation of refractive index has also been studies in terms of wavelength and energy using WDD model and values of single oscillator energy and dispersion energy has been obtained.  相似文献   

15.
Amorphous chalcogenides, based on Se, have become materials of commercial importance and were widely used for optical storage media. The present work deals with the structural and optical properties of Ga10Se81Pb9 ternary chalcogenide glass prepared by melt quenching technique. The glass transition, crystallization and melting temperatures of the synthesized glass were measured by non-isothermal DSC measurements at a constant heating rate of 30 K/min. Thin films of thickness 4000 Å were prepared by thermal evaporation techniques on glass/Si (1 0 0) wafer substrate. These thin films were thermally annealed for two hours at three different annealing temperatures of 345, 360 and 375 K, which were in between the glass transition and crystallization temperatures of the Ga10Se81Pb9 glass. The structural, morphological and optical properties of as-prepared and annealed thin films were studied. Analysis of the optical absorption data showed that the rules of the non-direct transitions predominate. It was also found that the optical band gap decreases while the absorption coefficient, refractive index and extinction coefficient increase with increasing the annealing temperature. Due to the higher values of absorption coefficient and annealing dependence of the optical band gap and optical constants, the investigated material could be used for optical storage.  相似文献   

16.
The terahertz (THz) conductivity of FeSe0.5Te0.5 (‘11’-type) and Co-doped BaFe2As2 (‘122’-type) thin films are investigated. For ‘11’-type, the frequency dependence of the complex conductivity can be understood as that of BCS-type superconductor near the superconducting gap energy, and we estimated the superconducting gap energy to be 0.6 meV. For ‘122’-type, we estimated the superconducting gap energy to be 2.8 meV, which is considered to be the superconducting gap opened at the electron-type Fermi surface near the M point.  相似文献   

17.
Co-doped TiO2 films were fabricated under different conditions using reactive facing-target magnetron sputtering. Co doping improves the transformation of TiO2 from anatase phase to rutile phase. The chemical valence of doped Co in the films is +2. All the films are ferromagnetic with a Curie temperature above 340 K. The average room-temperature moment per Co of the Co-doped TiO2 films fabricated at 1.86 Pa decreases from 0.74 μB at x=0.03 to 0.02 μB at x=0.312, and decreases from 0.54 to 0.04 μB as x increases from 0.026 to 0.169 for the Co-doped TiO2 films fabricated at 0.27 Pa. The ferromagnetism originates from the oxygen vacancies created by Co2+ dopants at Ti4+ cations. The optical band gaps value (Eg) of the Co-doped TiO2 films fabricated at 1.86 Pa decreases linearly from 3.35 to 2.62 eV with the increasing x from 0 to 0.312. For the Co-doped TiO2 films fabricated at 1.86 Pa, the Eg decreases linearly from 3.26 to 2.53 eV with increasing x from 0 to 0.350.  相似文献   

18.
Zinc oxide thin films have been obtained in O2 ambient at a pressure of 1.3 Pa by pulsed laser deposition (PLD) using ZnO powder target and ceramic target. The effect of temperature on structural and optical properties of ZnO thin films was investigated systematically by XRD, SEM, FTIR and PL spectra. The results show that the best structural and optical properties can be achieved for ZnO thin film fabricated at 700 °C using powder target and at 400 °C using ceramic target, respectively. The PL spectrum reveals that the efficiency of UV emission of ZnO thin film fabricated by using powder target is low, and the defect emission of ZnO thin film derived from Zni and Oi is high.  相似文献   

19.
Tin oxide thin films were deposited by a novel technique called as modified-SILAR. The preparative parameters were optimized to obtain good quality thin films. As-deposited films were annealed in O2 atmosphere for 1 h at 500 °C. The annealed films were irradiated using Au8+ ions with energy of 100 MeV at different fluencies of 1 × 1011, 1 × 1012, 5 × 1012 and 1 × 1013 ions/cm2 using tandem pelletron accelerator. The irradiation-induced modifications in tin oxide thin films were studied using XRD, AFM, optical band gap, photoluminescence and IV measurements. XRD studies showed formation of tin oxide with tetragonal structure. AFM revealed uniform deposition of the material with increase in grain size after irradiation. Decrease in band gap from 3.51 eV to 2.82 eV was seen with increases in fluency. A decrease in PL intensity, and an additional peak was observed after irradiation. IV measurements showed a decrease in resistance with fluency.  相似文献   

20.
《Current Applied Physics》2010,10(3):724-728
Fe3+ doped δ-Bi2O3 thin films were prepared by sol–gel method on quartz glass substrate at room temperature and annealed at 800 °C. The thin films were then characterized for structural, surface morphological, optical and electrical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption measurements and d.c. two-probe, respectively. The XRD analyses revealed the formation δ-Bi2O3 followed by a mixture of Bi25FeO40 and Bi2Fe4O9. SEM images showed reduction in grain sizes after doping and the optical studies showed a direct band gap which reduced from 2.39 eV for pure δ-Bi2O3 to 1.9 eV for 10% Fe3+ doped δ-Bi2O3 thin film. The electrical conductivity measurement showed the films are semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号