共查询到20条相似文献,搜索用时 15 毫秒
1.
D.J. Hoarty S.F. James C.R.D. Brown B.M. Williams H.K. Chung J.W.O. Harris L. Upcraft B.J.B. Crowley C.C. Smith R.W. Lee 《High Energy Density Physics》2010,6(1):105-108
Heating of thin foil targets by an high power laser at intensities of 1017–1019 W/cm2 has been studied as a method for producing high temperature, high density samples to investigate X-ray opacity and equation of state. The targets were plastic (parylene-N) foils with a microdot made of a mixture of germanium and titanium buried at depth of 1.5 μm. The L-shell spectra from the germanium and the K-shell spectra from the titanium were taken using crystal spectrometers recording onto film and an ultra fast X-ray streak camera coupled to a conical focussing crystal with a time resolution of 1 ps. The conditions in the microdot were inferred by comparing the measured spectra to synthetic spectra produced by the time-dependent collisional–radiative (CR) models FLY and FLYCHK. The data were also compared to simulated spectra from a number of opacity codes assuming local thermodynamic equilibrium (LTE). Temperature and density gradients were taken into account in the comparisons. The sample conditions were inferred from the CR modelling using FLYCHK to be 800 ± 100 eV and 1.5 ± 0.5 g/cc. The best fit to the LTE models was at a temperature 20% lower than with the CR model. Though the sample departs from LTE significantly useful spectral comparisons can still be made. The results and comparisons are discussed along with improvements to the experimental technique to achieve conditions closer to LTE. 相似文献
2.
Radiative opacity is a key parameter to understanding the transport of energy in high energy density plasmas. Many calculations of opacity apply approximations that do not fully resolve the true line structure of the frequency dependent absorption spectrum and the accuracy of such results is uncertain for simulations containing many complex ions. The DAVROS opacity code has been developed to perform Detailed Term Accounting (DTA) calculations with the aim of resolving the fine structure resulting from the myriad line transitions due to arbitrarily complex atomic configurations. By making use of High Performance Computing (HPC), such calculations, whilst not yet routine, are now more feasible. Some illustrative results from DAVROS are presented and comparisons made with experiment data. 相似文献
3.
Unresolved transition arrays (UTAs) are a method of approximating complex atomic physics in plasma opacity calculations, and as such are very important in modern plasma dynamic simulations. In this paper we use full atomic physics calculations to test various UTA models, paying particular attention to the lineshape and its effect on the mean opacity. We find that a Gaussian lineshape is sufficient provided that the line width is correctly determined. This width can be calculated using existing formulae, or approximated by neglecting correlations between term line energies and strengths or the selection rules on term - term transitions. We have quantified transition array narrowing due to correlations for a set of iron transitions and shown that a simple model for these incurs fairly large random errors. The neglect of the selection rules is also seen to result in random errors of up to an order of magnitude. These results may prove very useful in the future development of opacity codes, in particular those intended to run in line with hydrodynamic simulations. 相似文献
4.
Predictions of hot, dense iron plasma opacity at 89 eV photon energy are compared with experimental determinations from the transmission of laser-heated iron to extreme ultra-violet (EUV) laser radiation. The EUV laser was pumped using six beams of an Nd-Yag laser in a refraction compensating geometry, while another beam irradiated a tamped solid iron target with an intensity of 1014 W cm−2. The Ehybrid hydrodynamic and atomic physics code was used to predict temperatures, densities and ionisation throughout the evolving iron plasma. The iron opacities were deduced taking into account free–free, bound–free and bound–bound absorption. Bound–bound absorption was considered using atomic data generated by the Opacity Project. Reasonable overall agreement between theory and experiment was obtained for the iron layer transmission. The simulations indicated the dominance of bound–bound absorption throughout most regions of the iron plasma, but also the potential importance of photoionisation from core levels where energetically possible. 相似文献
5.
6.
7.
8.
Tensile and mixed-mode strength of a thin film-substrate interface under laser induced pulse loading
Junlan Wang Nancy R. Sottos Richard L. Weaver 《Journal of the mechanics and physics of solids》2004,52(5):999-1022
Laser induced stress waves are used to characterize intrinsic interfacial strength of thin films under both tensile and mixed-mode conditions. A short-duration compressive pulse induced by pulsed-laser ablation of a sacrificial layer on one side of a substrate is allowed to impinge upon a thin test film on the opposite surface. Laser-interferometric measurements of test film displacement enable calculation of the stresses generated at the interface. The tensile stress at the onset of failure is taken to be the intrinsic tensile strength of the interface. Fused-silica substrates, with their negative nonlinear elasticity, cause the compressive stress wave generated by the pulse laser to evolve a decompression shock, critical for generation of the fast fall times needed for significant loading of surface film interfaces. By allowing the stress pulse to mode convert as it reflects from an oblique surface, a high amplitude shear wave with rapid fall time is generated and used to realize mixed-mode loading of thin film interfaces. We report intrinsic strengths of an aluminum/fused silica interface under both tensile and mixed-mode conditions. The failure mechanism under mixed-mode loading differs significantly from that observed under pure tensile loading, resulting in a higher interfacial strength for the mixed-mode case. Inferred strengths are found to be independent, as they should be, of experimental parameters. 相似文献
9.
《力学快报》2020,10(4):286-297
The nonlinear thermoelastic responses of an elastic medium exposed to laser generated shortpulse heating are investigated in this article. The thermal wave propagation of generalized thermoelastic medium under the impact of thermal loading with energy dissipation is the focus of this research. To model the thermal boundary condition(in the form of thermal conduction),generalized Cattaneo model(GCM) is employed. In the reference configuration, a nonlinear coupled Lord-Shulman-type generalized thermoelasticity formulation using finite strain theory(FST) is developed and the temperature dependency of the thermal conductivity is considered to derive the equations. In order to solve the time-dependent and nonlinear equations, Newmark's numerical time integration technique and an updated finite element algorithm is applied and to ensure achieving accurate continuity of the results, the Hermitian elements are used instead of Lagrangian's. The numerical responses for different factors such as input heat flux and nonlinear terms are expressed graphically and their impacts on the system's reaction are discussed in detail.The results of the study are presented for Green–Lindsay model and the findings are compared with Lord-Shulman model especially with regards to heat wave propagation. It is shown that the nature of the laser's thermal shock and its geometry are particularly determinative in the final stage of deformation. The research also concluded that employing FST leads to achieving more accuracy in terms of elastic deformations; however, the thermally nonlinear analysis does not change the results markedly. For this reason, the nonlinear theory of deformation is required in laser related reviews, while it is reasonable to ignore the temperature changes compared to the reference temperature in deriving governing equations. 相似文献
10.
采用磁流体方程和有限差分法,对内爆过程中高能量密度状态下的磁场对带电粒子和压缩过程的作用机制进行研究。结果显示:内爆过程中的各项参数为电子离子温度(50 keV)、压强(1 TPa)、粒子数密度(1024 cm-3)。套筒材料对约束时间、点火条件有重要影响;同时当磁感应强度大于5 T时,电子热传导系数比无磁场时减小2个数量级,离子热传导系数也出现了明显下降,在压缩峰值处,磁感应强度超过5 T时α粒子能量沉积密度比磁感应强度为0和1 T时相对增加约200倍。磁化在一定程度上也会阻碍内爆压缩过程。
相似文献11.
Based upon the blood vessel of being regarded as the elasticity tube, and that the tissue restricts the blood vessel wall, the rule of pulse wave propagation in blood vessel was studied. The viscosity of blood, the elastic modulus of blood vessel, the radius of tube that influenced the pulse wave propagation were analyzed. Comparing the result that considered the viscosity of blood with another result that did not consider the viscosity of blood, we finally discover that the viscosity of blood that influences the pulse wave propagation can not be neglected; and with the accretion of the elastic modulus the speed of propagation augments and the press value of blood stream heightens; when diameter of blood vessel reduces, the press of blood stream also heightens and the speed of pulse wave also augments. These results will contribute to making use of the information of pulse wave to analyse and auxiliarily diagnose some causes of human disease. 相似文献
12.
The molecular dynamics simulations are performed to show that in aque- ous environments, a short single-walled carbon nanotube (SWCNT) guided by a long SWCNT, either inside or outside the longer tube, is capable of moving along the nanotube axis unidirectionally in an electric field perpendicular to the carbon nanotube (CNT) axis with the linear gradient. The design suggests a new way of molecule transportation or mass delivery. To reveal the mechanism behind this phenomenon, the free energy profiles of the system are calculated by the method of the potential of mean force (PMF). 相似文献
13.
A new method for enhancing the heating effect of high power short pulse laser on biological tissue by micro/nano metal particles was proposed. Theoretical analysis of the influences of the micro/nano particle kind, the concentration and the microcosmic distribution of micro/nano particles on the temperature response was carried out with a multi-layer hyperbolic heat conduction model with volumetric heat generation. The results indicate that embedding micro/nano particles could improve the surface temperature increase of biological tissue with short duration and reduce the deeper material temperature under the same heating condition, which would help strengthen the heating effects of high power short pulse laser on biological tissue. This study may open a new technical approach for improving laser applications. 相似文献
14.
IntroductionThatthebloodhasviscoelasticpropertiesisawell_knownfact.TheresearchesforthebloodviscoelasticitybyG .B .Thurston[1~4]andS .Chien[5 ]showthatthebloodnotonlyappearstheviscoelasticityinvariousoscillatorybloodflows,butalsohasquitestrongelasticityinsome… 相似文献
15.
《Wave Motion》2020
New higher-order finite elements of enhanced convergence properties for acoustic wave simulation are presented in the paper. The element matrices are obtained by combining modal synthesis and optimization techniques in order to achieve minimum errors of higher modes of the computational domain. As a result, simulation models of propagating wave pulses require a smaller number of finite element divisions per wavelength compared to the conventional element model thus significantly reducing computational costs. Though finite element matrices are obtained in optimization, the resulting patterns of the matrices are versatile and further can be used in any wave propagation model. The mass matrices of the elements are diagonal, so explicit time integration schemes are applicable. The usage of new elements is especially efficient in situations where wavelengths of the simulated signal are much shorter than the dimensions of the computational domain. This is referred to as short wave propagation analysis. The results of wave propagation simulation for ultrasonic measurements are presented as application examples. The B-scans and computed dispersion curves are provided for visual interpretation of the results. 相似文献
16.
A. P. Ershov S. A. Kamenshchikov E. B. Kolesnikov A. A. Logunov A. A. Firsov V. A. Chernikov 《Fluid Dynamics》2008,43(4):605-612
A direct method of measuring the flow velocity in a supersonic wind tunnel by creating a low-intensity periodic pulse discharge is proposed. 相似文献
17.
A five-branch-tube model simulating human systemic circulation system is proposed to analyze the effects of External Counterpulsation
(ECP) on the pulse waves in human aorta. The results derived from the model demonstrate that the pressure and flow waves in
aorta could be changed when ECP is in operation, and the results are approximately in agreement with the experiment results
by five-branch-tube simulation system. It provides an effective way to define the actual operation of ECP so as to get an
optimal therapeutic effect.
The project supported by the National Natural Science Foundation of China 相似文献
18.
Three series of shear oscillatory tests are performed on polycarbonate melts reinforced with short glass fibers at the temperatures T1=250 and T2=290 °C. The content of glass fibers ranges from 0 to 20 wt.%. In the first series, virgin polycarbonate is used, in the other series, dynamic tests are performed on recycled polymer, whereas in the third series, a mixture of virgin with recycled polycarbonates is employed. Constitutive equations are derived for the viscoelastic behavior of a polymer melt at isothermal deformations with small strains. A polymer is treated as an equivalent transient network of strands that rearrange at random times as they are agitated by thermal fluctuations. The time-dependent response of a network is determined by four adjustable parameters that are found by fitting the experimental data. Excellent agreement is demonstrated between the observations and the results of numerical simulation. The study focuses on the effects of temperature and filler content on the material constants in the stress–strain relations. 相似文献
19.
Observations are reported in oscillatory torsion tests at room temperature on unfilled and fiber-reinforced polycarbonates melt-blended with impurities (acronitrile–butadiene–styrene, high-impact polystyrene, low-density polyethylene, poly(ethylene terephthalate) and Nylon 6,6). Constitutive equations are derived for the viscoelastic behavior of glassy polymers. With reference to the theory of cooperative relaxation, a polymer is treated as an ensemble of meso-regions with arbitrary shapes and sizes. The time-dependent response of the ensemble is attributed to rearrangement of meso-domains. The rearrangement events occur at random times, when meso-regions are excited by thermal fluctuations. Stress–strain relations are derived by using the laws of thermodynamics. The governing equations are determined by four adjustable parameters that are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of numerical simulation. The study focuses on the effects of the concentration of impurities and glass fibers on material parameters. 相似文献
20.
A mathematical formulation of the problem is given. A method is proposed to determine the initial velocities of points of an ice sheet subjected to a point shock pulse. An example of calculation of ice-sheet deflections is considered. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 2, pp. 152–159, March–April, 2008. 相似文献