首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The AC electrical conductivity and dielectrical properties of 2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3, 2-c]quinoline-3-carbonitrile(Ph-HPQ) and 2-amino-4-(2-chlorophenyl)-6-ethyl-5-oxo-5,6-dihydro-4H-pyrano [3, 2-c] quinoline-3-carbonitrile(Ch-HPQ) thin films were determined in the frequency range of 0.5 k Hz–5 MHz and the temperature range of 290–443 K. The AC electrical conduction of both compounds in thin film form is governed by the correlated barrier hopping(CBH) mechanism. Some parameters such as the barrier height, the maximum barrier height, the density of charges, and the hopping distance were determined as functions of temperature and frequency. The phenoxyphenyl group has a greater influence on those parameters than the chlorophenyl group. The AC activation energies were determined at different frequencies and temperatures. The dielectric behaviors of Ph-HPQ and Ch-HPQ were investigated using the impedance spectroscopy technique. The impedance data are presented in Nyquist diagrams for different temperatures. The Ch-HPQ films have higher impedance than the Ph-HPQ films. The real dielectric constant and dielectric loss show a remarkable dependence on the frequency and temperature. The Ph-HPQ has higher dielectric constants than the Ch-HPQ.  相似文献   

2.
Optical properties of iridium oxide films fabricated by the spray pyrolysis technique (SPT) have been investigated. The transmission and reflection spectra of the sprayed films were measured by using a double-beam spectrophotometer in the wavelength range from 200 to 2500 nm. Influences of the preparative parameters; namely, substrate temperature (350-500 °C) and solution molarity (0.005-0.03 M), on the optical characteristics were examined. The solution molarity of the iridium chloride solution was varied so as to prepare iridium oxide thin films with thicknesses ranging from 160 to 325 nm. Some important characteristics of optical absorption, such as optical dispersion energies, the dielectric constant, the ratio of the number of charge carriers to the effective mass, the single oscillator wavelength, and the average value of the oscillator strength, were evaluated. The value of the refractive index was found to depend on the chemical composition as well as the degree of stoichiometry of IrO2. The values obtained for the high frequency dielectric constant through two procedures are in the range of 2.8-3.9 and 3.3-4.6 over the relevant ranges of the substrate temperature and solution molarity, respectively. Analysis of the energy dispersion curve of the absorption coefficient indicated a direct optical transition with the bandgap energy ranging between 2.61 and 2.51 eV when the substrate temperature increases from 350 to 500 °C.  相似文献   

3.
CuIn3S5 thin films were prepared from powder by thermal evaporation under vacuum (10−6 mbar) onto glass substrates. The glass substrates were heated from 30 to 200 °C. The films were characterized for their optical properties using optical measurement techniques (transmittance and reflectance). We have determined the energy and nature of the optical transitions of films. The optical constants of the deposited films were determined in the spectral range 300-1800 nm from the analysis of transmission and reflection data. The Swanepoel envelope method was employed on the interference fringes of transmittance patterns for the determination of variation of refractive index with wavelength. Wemple-Di Domenico single oscillator model was applied to determine the optical constants such as oscillator energy E0 and dispersion energy Ed of the films deposited at different substrate temperatures. The electric free carrier susceptibility and the ratio of the carrier concentration to the effective mass were estimated according to the model of Spitzer and Fan.  相似文献   

4.
Thin films of SnO2 were deposited by RF-magnetron sputtering on quartz substrates at room temperature in an environment of Ar and O2. The XRD pattern shows amorphous nature of the as-deposited films. The optical properties were studied using the reflectance and transmittance spectra. The estimated optical band gap (Eg) values increase from 4.15 to 4.3 eV as the Ar gas content decreases in the process gas environment. The refractive index exhibits an oscillatory behavior that is strongly dependent on the sputtering gas environment. The Urbach energy is found to decrease with increase in band gap. The band gap is found to decrease on annealing the film. The role of oxygen defects is explored in explaining the variation of optical parameters.  相似文献   

5.
Zinc Selenide (ZnSe) thin films were deposited onto well cleaned glass substrates using vacuum evaporation technique under a vacuum of 3×10−5 mbar. The prepared ZnSe samples were implanted with mass analyzed 75 keV B+ ions at different doses ranging from 1012 to 1016 ions cm−2. The composition, thickness, microstructures, surface roughness and optical band gap of the as-deposited and boron-implanted films were studied by Rutherford backscattering (RBS), grazing incidence X-ray diffraction, Atomic force microscopy, Raman scattering and transmittance measurements. The RBS analysis indicates that the composition of the as-deposited and boron-implanted films is nearly stoichiometric. The thickness of the as-deposited film is calculated as 230 nm. The structure of the as-deposited and boron-implanted thin films is cubic. It is found that the surface roughness increases on increasing the dose of boron ions. In the optical studies, the optical band gap value decreases with an increase of boron concentration. In the electrical studies, the prepared device gave a very good response in the blue wavelength region.  相似文献   

6.
7.
The structural and optical properties of as-deposited and γ-rays irradiated 2-(2,3-dihydro-1,5dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl)acetonitrile (DOPNA) thin films have been reported. The structural properties of as-deposited and γ-rays irradiated DOPNA thin films are characterized by Fourier transformation infrared, X-ray diffraction and transmission electron microscope techniques. The transmittance, T(λ), and reflectance, R(λ), are measured at the normal incidence of light by a double beam spectrophotometer in the wavelength range 200-2200 nm. The refractive and absorption indices have been calculated. The dispersion parameters such as dispersion energy, oscillator energy and dielectric constant at high frequency are evaluated. The data of the absorption coefficient are analyzed in order to determine the type of inter-band electronic transitions and the optical band gap of the films. Other optical absorption parameters, namely, the extinction molar coefficient, oscillator strength and the electric dipole strength, are also calculated.  相似文献   

8.
We have investigated photon-induced changes of optical parameters of amorphous Ge20Bi10Se70 thin films due to illumination by laser irradiation. Absorption peaks were detected in the tailing area in the wavelength range between 300 and 600 nm. These peaks reduced to two peaks in the higher dose (9 J/cm2). The optical energy gap E gd was found to have the well known direct-allowed transition mechanism. Values of E gd show that all films exhibit a photo-induced photo-darkening effect indicated by a red shift of E gd. The higher laser dose shows an increase in E gd values. The effect of laser on other optical constants was also investigated. The refractive index (n), extinction coefficient (k) and dielectric constant of irradiated films were also calculated.  相似文献   

9.
This paper deals with some physical properties of antimony sulphide Sb2S3 thin films obtained by an annealing process in sulphur vapors at 300 °C of Sb thermal evaporated thin films deposited on glass substrate. The crystal structure and surface morphology were investigated by both XRD and AFM techniques. This structural study shows that Sb2S3 thin films were well crystallized in orthorhombic structure and some parameters such as the lattice parameter, crystallite size, microstrain and degree of preferred orientation have been reported and correlated with the effect of crystallite size. On the other hand, the refractive index and the extinction coefficient were discussed in terms of the Forouhi–Bloomer model. The optical band gap was found to range from 1.75 to 2.23 eV. Finally, the analysis of the optical parameters extracted from the Urbach–Martienssen and Forouhi–Bloomer models lead to some explanations of the correlations between the structural properties in terms of the crystallite size and optical ones.  相似文献   

10.
In order to evaluate the effect of Er doping in the range of 0–1.0 mol% on optical indirect band gap energy (Eg) of the film, the Er-doped TiO2 (Er-TiO2) thin films were spin-coated onto fluorine-doped SnO2 coated (FTO) glasses. Glancing angle X-ray diffraction (GAXRD) results indicated that the films whose thickness was 550 nm consisted of pure anatase and FTO substrate. The anatase (101) TiO2 peaks became broader and weaker with the rise in Er content. The apparent crystallite size decreased from 12 nm to 10 nm with increasing the amount of Er from 0 mol% to 1.0 mol%. UV–vis spectrophotometry showed that the values of Eg decreased from 3.25 eV to 2.81 eV with the increase of Er doping from 0 to 0.7 mol%, but changed to 2.89 eV when Er content was 1.0 mol%. The reduction in Eg might be attributed to electron and/or hole trapping at the donor and acceptor levels in the TiO2 band structure.  相似文献   

11.
The optical transmission spectra of amorphous (a-) Se1−xInx films, with x = 0.0, 0.05, 0.18 and 0.35, that prepared by thermal evaporation from their corresponding bulk ingots, are recorded over the spectral region of 500–2500 nm. A simple straight forward procedure proposed by Swanepeol has been applied to determine the two components of the complex refractive index (). The dispersion of is examined in terms of the Wemple and DiDomenico model and is discussed in terms of In-content. An estimation of various optical parameters such as, the optical energy gap (Eg = 1.96–1.33 eV), single oscillator energy (Eo = 3.95–3.16 eV), oscillator dispersion energy (Ed = 22.6–31.6 eV), lattice oscillator strength (El = 0.38–0.61 eV) and wavelength at zero material dispersion (λc = 2.0569–2.0879 μm) have been given and discussed in relation to the coordination number, hydrostatic density and formed chemical bonds that are introduced in the network of a-Se with the introduction of up to 35 at.% In.  相似文献   

12.
Pure and tin doped zinc oxide (Sn:ZnO) thin films were prepared for the first time by NSP technique using aqueous solutions of zinc acetate dehydrate, tin (IV) chloride fendahydrate and methanol. X-ray diffraction patterns confirm that the films are polycrystalline in nature exhibiting hexagonal wurtzite type, with (0 0 2) as preferred orientation. The structural parameters such as lattice constant (‘a’ and ‘c’), crystallite size, dislocation density, micro strain, stress and texture coefficient were calculated from X-ray diffraction studies. Surface morphology was found to be modified with increasing Sn doping concentration. The ZnO films have high transmittance 85% in the visible region, and the transmittance is found to be decreased with the increase of Sn doping concentration. The corresponding optical band gap decreases from 3.25 to 3.08 eV. Room temperature photoluminescence reveals the sharp emission of strong UV peak at 400 nm (3.10 eV) and a strong sharp green luminescence at 528 nm (2.34 eV) in the Sn doped ZnO films. The electrical resistivity is found to be 106 Ω-cm at higher temperature and 105 Ω-cm at lower temperature.  相似文献   

13.
In this work, the synthesis of molecular materials formed from A2[TiO(C2O4)2] (A = K, PPh4) and 1,8 dihydroxyanthraquinone is reported. The synthesized materials were characterized by atomic force microscopy (AFM), infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. IR spectroscopy showed that the molecular-material thin-films, deposited by vacuum thermal evaporation, exhibit the same intra-molecular vibration modes as the starting powders, which suggests that the thermal evaporation process does not alter the initial chemical structures. Electrical transport properties were studied by dc conductivity measurements. The electrical activation energies of the complexes, which were in the range of 0.003-1.16 eV, were calculated from Arrhenius plots. Optical absorption studies in the wavelength range of 190-1090 nm at room temperature showed that the optical band gaps of the thin films were around 1.9-2.3 eV for direct transitions Egd. The cubic NLO effects were substantially enhanced for materials synthesized from K2[TiO(C2O4)2], where χ(3) (−3ω; ω, ω, ω) values in the promising range of 10−12 esu have been evaluated.  相似文献   

14.
To solve the problem of large error when measure the laser induced damage threshold of thin films in the case of Gaussian distribution beam induced damage thin films, optical system of flattop beam shaper which is capable of redistributing a beam with a Gaussian profile to a flattop profile was designed with optical design software ZEMAX. The Fermi-Dirac beam model was chosen as the distribution function of the flattop beam in this paper, the mapping formula of the input Gaussian beam and the output flattop beam was establish, the surface coefficient of aspheric was given. The energy conversion efficiency was 95.33% and the flattened degree was 93.66% in this design. The accuracy of measurement has been improved when measure the laser induced damage threshold of thin films by the flattop beam.  相似文献   

15.
Poly (3-methyl thiophene) thin films were prepared by chemical bath deposition technique on glass substrate; the prepared thin films were characterized for structural, morphological and optical properties. The variation in the oxidant concentration has an influence on the properties of the P3MeT thin films. The increase in the oxidant concentration leads to increase in the thickness of the film. The binding energy increases due to increase in oxidation concentration. The P3MeT thin films show smooth surface morphology with increase in oxidant concentration whereas the contact angle of the thin film decreases with increase in oxidant concentration. The optical absorbance of these thin films was found to increase with decrease in the optical band gap due to increase in oxidant concentration.  相似文献   

16.
Hybrid inorganic-organic second-order nonlinear optical (NLO) materials have been obtained through hydrolysis and co-condensation between tetraethyl silicate (TEOS), Vinyltriethoxysilane (VTES) and an alkoxysilane dye (ICTES-DR1). The hybrid materials showed a thermal stability up to 306 °C in thermogravimetric analysis (TGA) thermograms and no visible glass transition temperature (Tg) was observed in the range 50-200 °C in differential scanning calorimetry (DSC) thermograms. The poling profiles of the hybrid films were investigated by using the in situ second harmonic generation (SHG) measurement. The thermal stability of the second order NLO properties of the poled films were also investigated by the in situ SHG intensity probing. It has been shown that the NLO response and its thermal stability were strongly dependent on the thermal pretreatment of the films.  相似文献   

17.
Crystalline ZnO:Ga thin films with highly preferential c-axis oriented crystals were prepared on Si(001) substrates at different temperatures using the reactive magnetron sputtering technique. Effects of temperature-induced stress in ZnO:Ga films were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), electrical transport, and spectroscopic ellipsometry measurements. XRD results showed that the films were highly c-axis (out-of-plane) oriented and crystallinity improved with growth temperature. The residual compressive stress in films grown at low temperature relaxes with substrate temperature and becomes tensile stress with further increases in growth temperature. Resistivity of the films decreases with increasing stress, while the carrier concentration and mobility increase as the stress increases. The mechanism of the stress-dependent bandgap of ZnO:Ga films grown at different temperatures is suggested in the present work.  相似文献   

18.
In this work, K-doped ZnO thin films were prepared by a sol–gel method on Si(111) and glass substrates. The effect of different K-doping concentrations on structural and optical properties of the ZnO thin films was studied. The results showed that the 1 at.% K-doped ZnO thin film had the best crystallization quality and the strongest ultraviolet emission ability. When the concentration of K was above 1 at.%, the crystallization quality and ultraviolet emission ability dropped. For the K-doped ZnO thin films, there was not only ultraviolet emission, but also a blue emission signal in their photoluminescent spectra. The blue emission might be connected with K impurity or/and the intrinsic defects (Zn interstitial and Zn vacancy) of the ZnO thin films.  相似文献   

19.
Ternary thin films of cerium titanium zirconium mixed oxide were prepared by the sol-gel process and deposited by a spin coating technique at different spin speeds (1000-4000 rpm). Ceric ammonium nitrate, Ce(NO3)6(NH4)2, titanium butoxide, Ti[O(CH2)3CH3]4, and zirconium propoxide, Zr(OCH2CH2CH3)4, were used as starting materials. Differential calorimetric analysis (DSC) and thermogravimetric analysis (TGA) were carried out on the CeO2-TiO2-ZrO2 gel to study the decomposition and phase transition of the gel. For molecular, structural, elemental, and morphological characterization of the films, Fourier Transform Infrared (FTIR) spectral analysis, X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), cross-sectional scanning electron microscopy (SEM), and atomic force microscopy (AFM) were carried out. All the ternary oxide thin films were amorphous. The optical constants (refractive index, extinction coefficient, band gap) and thickness of the films were determined in the 350-1000 nm wavelength range by using an nkd spectrophotometer. The refractive index, extinction coefficient, and thickness of the films were changed by varying the spin speed. The oscillator and dispersion energies were obtained using the Wemple-DiDomenico dispersion relationship. The optical band gap is independent of the spin speed and has a value of about Eg≈2.82±0.04 eV for indirect transition.  相似文献   

20.
Iron oxide thin films were prepared by spray pyrolysis technique (SPT) at various substrate temperatures (Tsub) and different deposition time. X-ray diffraction (XRD) analysis showed that, at Tsub ≥ 350 °C, a single phase of α-Fe2O3 film is formed which has the rhombohedral structure. Moreover, the crystallinity was improved by increasing Tsub. The effect of Tsub as well as deposition time on the optical dispersion of these films has been investigated. The optical transmittance and reflectance measurements were performed by using spectrophotometer in the wavelength range from 300 to 2500 nm. The refractive index was determined by using Murmann's exact equation. It was observed that, the refractive index increased with increasing in both the Tsub and film thickness. The optical dispersion parameters have been evaluated and analyzed by using Wemple-Didomenico equation. The obtained results showed that, the dielectric properties have weak dependencies of growth temperature and film thickness. At Tsub ≥ 350 °C, the average values of oscillator energy, Eo and dispersion energy, Ed were found to be 5.96 and 34.08 eV. While at different thickness, the average values of dispersion energies were found to be 3.93 and 17.08 eV. Also, the average values of oscillator strength So and single resonant frequency ωo were estimated 10.78 × 1013 m−2 and 5.99 × 1015 Hz, while at different thickness were evaluating 4.81 × 1013 m−2 and 6.11 × 1015 Hz. Furthermore, the optical parameters such as wavelength of single oscillator λo, plasma frequency ωp, and dielectric constant ? have been evaluated. The carrier concentration Nopt by using Drud's theory was obtained the range of 5.07 × 1025 m−3 to 1.04 × 1026 m−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号