首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
通过在铽的酞菁卟啉混杂三层的卟啉周边共价连接体积庞大的笼型倍半硅氧烷(POSS), 得到了首个包含POSS的混杂三层Tb2(Pc)[T(OPOSS)4PP]2 (1)[H2Pc=phthalocyanine;H2T(OPOSS)4PP=5, 10, 15, 20-tetra{[[N-[heptakis(isobutyl)propoxy]phenyl]octasiloxane]}porphyrin]。为了对比研究, 同时合成了类似的三层化合物Tb2(Pc)(TPP)2(2)(H2TPP=5,10,15,20-tetraphenyporphyrin)。尤其值得注意的是, 在没有外加磁场的条件下, Tb2(Pc)[T(OPOSS)4PP]2(1)和Tb2(Pc)(TPP)2(2)分别表现出单分子磁体和非单分子磁体的性质, 这充分说明了共价连接均匀分布的POSS基团有效地分离了磁性核心, 从而改善了酞菁卟啉混杂三层的磁性。  相似文献   

2.
使用2种前驱体12(1=4,5-二(4-甲酯基)酚氧取代邻苯二甲腈,2=4-二缩三乙二醇单甲醚取代邻苯二甲腈)与Zn(OAc)2·2H2O在DBU(1,8-二氮杂双环[5.4.0]十一碳-7-烯)催化下,在正戊醇中进行酯交换及交叉聚合反应得到6种酞菁锌配合物。通过简单的硅胶柱色谱,可以将这6种配合物Zn[Pc(BP)4](3),Zn[Pc(BP)3(TEG)](4),Zn[Pc(BP)2(TEG)2]-opp(5),Zn[Pc(BP)2(TEG)2]-adj(6),Zn[Pc(BP)(TEG)3](7)和Zn[Pc(TEG)4](8)进行分离。对合成的6种化合物进行了质谱,元素分析,紫外-可见吸收光谱,核磁共振谱表征。另外,对这些化合物的电化学性质也进行了研究。  相似文献   

3.
使用Dy(NO3)3·6H2O与席夫碱配体2-(((2-羟基-3-甲氧基苄基)亚氨基)甲基)-4-甲氧基苯酚(H2L)和2个辅助配体PhCO2H和2-NO2-PhCO2H在乙醇中反应,得到2例Dy4配合物[Dy4(L)4(PhCO2)2(NO3)2(EtOH)2](1)和[Dy4(L)4(2-NO2-PhCO2)2(NO3)2(EtOH)2](2)。单晶X射线衍射解析表明配合物12均由Dy2基本单元构建,形成中心对称的四核线性链状结构。配合物12中Dy2单元中的一个Dy(Ⅲ)离子呈现七配位几何构型,另一个Dy(Ⅲ)离子呈现八配位几何构型。2例配合物均为单分子磁体,其能垒分别为110和108 K。通过理论计算对12的磁性能进行了分析。  相似文献   

4.
使用Dy (NO3)3·6H2O与席夫碱配体2-(((2-羟基-3-甲氧基苄基)亚氨基)甲基)-4-甲氧基苯酚(H2L)和2个辅助配体PhCO2H和2-NO2-PhCO2H在乙醇中反应,得到2例Dy4配合物[Dy4(L)4(PhCO2)2(NO3)2(EtOH)2](1)和[Dy4(L)4(2-NO2-PhCO2)2(NO3)2(EtOH)2](2)。单晶X射线衍射解析表明配合物12均由Dy2基本单元构建,形成中心对称的四核线性链状结构。配合物12中Dy2单元中的一个Dy (Ⅲ)离子呈现七配位几何构型,另一个Dy (Ⅲ)离子呈现八配位几何构型。2例配合物均为单分子磁体,其能垒分别为110和108 K。通过理论计算对12的磁性能进行了分析。  相似文献   

5.
本文报道了1个新的有机膦酸锰簇合物[Mn5O3(C11H9PO3)2(PhCOO)5(phen)2]·2H2O (1)的合成、结构及磁性质。单晶结构分析显示化合物1含有[Mn5O3]9+核结构,该结构通过连接5个金属离子形成了篮子型簇结构。化合物1的直流磁化率测试表明金属离子之间存在反铁磁相互作用。交流磁化率测试没有发现实部和虚部出现频率依赖行为,说明化合物1不是一个单分子磁体。  相似文献   

6.
采用两个易扭转异构的双三齿有机配体,双吡啶二甲基-6,6′-二酰肼-2,2′-连吡啶(H2L1)和双吡啶二乙基-6,6′-二酰肼-2,2′-连吡啶(H2L2),和金属镍离子组装得到2个金属螺旋体(helicate),Ni2(HL1)2(PF6)(BF4)(CH3OH)(H2O)2 (1)和Ni2(HL2)(H2L2)(ClO4)3(C2H5OH)(CH3OH)H2O)3 (2),并测定了它们的晶体结构。同时由配体H2L3出发,通过逐级组装的方法,得到一个镍-银杂金属的配位聚合物Ni2Ag2(HL3)2(ClO4)2(CH3CN)3 (3)。单晶结构表明,配位聚合物3中配体H2L3首先与镍离子组装成分子盒化合物(molecular box),该结构单元进一步通过Ag离子与分子盒外围N原子配位,使分子盒互相串连成一维配位聚合物3,分子盒聚集体沿c方向伸展成一维链结构,链与链之间相互平行,进一步堆积成二维孔道结构。  相似文献   

7.
向MoO3, H3PO4和bpy(4,4′-bipyridine)组成的反应体系中分别引入Cd(OAc)2·2H2O 和MnCl2·4H2O, 在水热条件下合成了两种基于还原型钼磷酸盐[P4Mo6O28(OH)3]9-(简称{P4Mo6})为建筑单元构筑的新型多维延展型无机-有机杂化材料(H2bpy)2[Cd(H2O)]3[Cd(HPO4)6(PO4)2(OH)6(MoO2)12]·5H2O(1)和 (H2bpy)3[Mn(H2O)2]2 [Mn(HPO4)6(PO4)2(OH)6(MoO2)12]·10H2O(2), 并通过元素分析、红外光谱、热重分析和X射线单晶衍射对其进行了表征。结果表明, 化合物1和2均属于三斜晶系, P1 空间群。化合物1的阴离子[Cd(H2O)]3[Cd(HPO4)6(PO4)2(OH)6(MoO2)12]2-是由二聚体 Cd[P4Mo6]2通过{Cd3}簇依次连接形成的一维无机链状结构; 化合物2的阴离子[Mn(H2O)2]2[Mn(HPO4)6(PO4)2(OH)6(MoO2)12]3-则是由二聚体Mn[P4Mo6]2通过Mn2+离子连接形成的二维无机层状结构。这2种无机延展结构均同质子化的bpy通过氢键作用形成不同的三维超分子网络。同时还探讨了化合物2的电化学性质。  相似文献   

8.
本文利用水热法合成了两个新型一价铜配合物[Cu2(ophen)2]·H2O的类同质多晶结构()和一个混合价的铜配合物[Cu2(obpy)2(NO3)]·H2O (2)。晶体结构分析表明:显现出于无水的类似物[Cu2(ophen)2]相同的堆积方式,则形成出新奇的空间堆积。混合价化合物2是完全离域的,通过氢键集聚体[(H2O)2(NO3-)2]将两个[Cu2(obpy)2]+单元连接起来形成哑铃状的四核结构。  相似文献   

9.
以2-甲基-8-羟基喹啉(HL)为配体合成了2个含有镝离子的配位化合物[Dy2L4(HL)4(H2O)2](ClO4)2·2H2O(1)和[Dy2L6(C2H5OH)]·H2O(2)。虽然在这两个配位化合物中配体都是2-甲基-8-羟基喹啉,但其参与配位的方式不同。这导致2个化合物中镝离子所处的配位环境不同,进而对化合物的磁性产生了影响。  相似文献   

10.
通过引入2,7-萘二磺酸(2,7-NDA2-)阴离子作为结构导向剂,与五元瓜环(Q[5])和过渡金属离子(Co2+、Ni2+、Zn2+、Cd2+)在水热条件下制备了4种新颖的Q[5]基超分子自组装体(Q[5]-SA),即{[M (H2O)4(Q[5])]·(NDA)}·xH2O (M=Co (1)、Ni (2)、Zn (3))和{[Cd2Cl2(H2O)4(Q[5])]·(NDA)}·13H2O (4)。单晶X射线衍射测试结果表明,自组装体1~3同构,其中Q[5]仅一端的部分端口羰基氧原子与金属离子配位形成简单配合物;而4中Q[5]的2个端口均与金属离子Cd2+配位形成了一维配位链。在自组装体1~4中,配体2,7-H2NDA均全脱质子,形成2,7-NDA2-阴离子平衡体系电荷,但均未能与金属离子配位,而在2,7-NDA2-阴离子与Q[5]外壁之间的瓜环外壁作用下进一步形成三维超分子结构。此外,还研究了自组装体14的荧光传感性能,结果表明它们都能够作为抗生素诺氟沙星(NFX)的比率型荧光探针。  相似文献   

11.
A supramolecular complex ( 1⋅ C60) was prepared by assembling (C60-Ih)[5,6]fullerene (C60) with the dinuclear Tb3+ triple-decker complex [(TPP)Tb(Pc)Tb(TPP)] ( 1 : Tb3+=trivalent terbium ion, Pc2−=phthalocyaninato, TPP2−=tetraphenylporphyrinato) with quasi-D4h symmetry to investigate the relationship between the coordination symmetry and single-molecule magnet (SMM) properties. Tb3+-Pc triple-decker complexes (Tb2Pc3) have an important advantage over Tb3+-Pc double-decker complexes (TbPc2) since the magnetic relaxation processes correspond to the Zeeman splitting when there are two 4f spin systems. The two Tb3+ sites of 1 are equivalent, and the twist angle (φ) was determined to be 3.62°. On the other hand, the two Tb3+ sites of 1⋅ C60 are not equivalent. The φ values for sites Tb1 and Tb2 were determined to be 3.67° and 33.8°, respectively, due to a change in the coordination symmetry of 1 upon association with C60. At 1.8 K, 1 and 1⋅ C60 undergo different magnetic relaxations, and the changes in the ground state affect the spin dynamics. Although 1 and 1⋅ C60 relax via QTM in a zero applied magnetic field (H), H dependencies of the magnetic relaxation times (τ) for H>1500 Oe are similar. On the other hand, for H<1500 Oe, the τ values have different behaviors since the off-diagonal terms ( ) affect the magnetic relaxation mechanism. From temperature (T) and H dependences of τ, spin-phonon interactions along with direct and Raman mechanisms explain the spin dynamics. We believe that a supramolecular method can be used to control the magnetic anisotropy along the C4 rotation axis and the spin dynamic properties in dinuclear Ln3+-Pc multiple-decker complexes.  相似文献   

12.
Densities, apparent molar volumes, and partial molar volumes of benzene solutions ofmeso-tetradimethylphenyl porphyrin derivatives H2T(i,j-CH3)PP (where i,j = 2,3-; 2,4-; 3,4-; 2,5-; 3,5-);meso-tetra-4-alkoxyphenyl porphyrin derivatives H2T(4-OCnH2n+1)PP (wheren = 2–4,6–8,10,12,16);meso-tetra-3-butoxyphenyl porphyrin H2T(3-OC4H9)PP;meso-tetra-4-tert-butylphenyl porphyrin H2T(4tBu)PP;meso-tetra-3,5-ditert-butylphenyl porphyrin H2T(3,5-tBu)PP at 25°C and tetraphenylporphyrin, H2TPP,H2T(4-OC10H21)PP;H2T(4-OC12H25)PP and H2T(4tBu)PP at 20°C; 30°C; 40°C; 50°C were determined. The solubilities of the compounds in benzene at 25°C were measured. The solvent excluded volumes for different conformational states and the topology of dimethyl derivatives of tetraphenylporphyrin were calculated and compared with partial molar volume data. The correlation between the partial molar volumes and van der Waals volumes for the derivatives H2TPP,n-alkanes,n-alkanols, fatty acids, cyclic compounds, and crown ethers using the equation of Terasawa was elaborated. The average increment of the methylene group for alkoxy-substituted H2TPP was calculated as δV 2 o (CH2) = 16.6±0.4cm3-mol-1. The volumetric expansion coefficients of benzene solutions of H2TPP; H2T(4-OC10,H21)PP; H2T(4-OC12H25)PP and H2T(4-tBu)PP were determined and discussed. The importance of packing efficiencies around the solute molecules were examined.  相似文献   

13.
A number of neutral Ianthanide(III) porphyrin-phthalocyanine heteroleptic sandwich complexes have been studied by using positive-ion electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry. The investigated compounds are represented as LnIII(TPP)(Pc), Ln 2 III (TPP)(Pc)2, and Ln 2 III (TPP)2(Pc), where Ln = Sm, Eu, or Gd, TPP is 5,10,15,20-tetraphenylporphyrinate, and Pc is phthalocyaninate. In all cases, intense signals corresponding to the singly charged molecular radical cations are observed. The formation of these molecular radical cations in electrospray ionization is attributed to electrochemical oxidation at the electrospray needle. Multiply charged molecular ions up to +5 are also observed. They are tentatively assigned to be formed from successive oxidation of the ligand(s). Apart from the molecular weight information, tandem mass spectrometry offers additional structural information on these complexes. From the fragmentation pattern of the europium complexes under collision-induced dissociation conditions, the configurations of the triple-decker complexes are assigned mass spectrometrically to be (TPP)Eu(Pc)Eu(Pc) and (TPP)Eu(Pc)Eu(TPP). In comparison with the previous spectroscopic findings that the positive “hole” is localized in the ligands of the complexes, there is evidence to suggest that intramolecular charge transfer or hole delocalization does occur within the macrocycles or between the metal centers and the macrocycles before fragmentation. The occurrence of this charge-transfer process is tentatively attributed to the result of collisional activation.  相似文献   

14.
Novel pyrene‐fused unsymmetrical phthalocyanine derivatives 2,3,9,10,16,17‐hexakis(2,6‐dimethylphenoxy)‐22,25‐diaza(2,7‐di‐tert‐butylpyrene)[4,5]phthalocyaninato zinc complex Zn[Pc(Pz‐pyrene)(OC8H9)6] ( 1 ) and 2,3,9,10‐tra(2,6‐dimethylphenoxy)‐15,18,22,25‐traza(2,7‐di‐tert‐butylpyrene)[4,5]phthalocyaninato zinc compound Zn[Pc(Pz‐pyrene)2(OC8H9)4] ( 2 ) were isolated for the first time. These unsymmetrical pyrene‐fused phthalocyanine derivatives have been characterized by a wide range of spectroscopic and electrochemical methods. In particular, the pyrene‐fused phthalocyanine structure was unambiguously revealed on the basis of single crystal X‐ray diffraction analysis of 1 , representing the first structurally characterized phthalocyanine derivative fused with an aromatic moiety larger than benzene.  相似文献   

15.
An organic/inorganic hybrid porphyrin derivative, namely, metal‐free tetrakisphenyl porphyrin–polyhedral oligomeric silsesquioxanes (H2TPP‐POSS) was synthesized by azide–alkyne click chemistry. The self‐assembly behavior of H2TPP‐POSS was systematically studied in CHCl3 at different concentrations and in solvents with different polarities. Novel nanovesicles could be obtained through the self‐assembly of H2TPP‐POSS in CHCl3 at a concentration lower than 10?4 m. Diffuse microrods formed at a concentration higher than 10?4 M . Additionally, the polarity of the solvent also greatly influenced the assembled morphologies, and a series of assembled morphologies, including crescent‐shaped micelles, spherical micelles, doughnut‐shaped vesicles, and ordered square sheets, could form in solvents with different polarities.  相似文献   

16.
The magnetoresistance study on TPP[M(Pc)(CN)2]2 (M=Fe, Co, Fe0.30Co0.70) salts is reported. These three salts have similar columnar structures, nevertheless exhibit different electrical behaviors. TPP[Fe(Pc)(CN)2]2 exhibits anisotropic giant negative magnetoresistance, while TPP[Co(Pc)(CN)2] exhibits large positive magnetoresistance. The alloyed compound, TPP[Fe0.30Co0.70 (Pc)(CN)2]2, also exhibits anisotropic negative magnetoresistance, although the decrease in the resistivity under the magnetic field is less than that of TPP[Fe(Pc)(CN)2]2. The g-tensor anisotropy in the [Fe(Pc)(CN)2] unit qualitatively explains the field-orientation dependence of the negative magnetoresistance. Magnetic fluctuation associated with a weak-ferromagnetic transition is suggested as a possible origin of the giant negative magnetoresistance.  相似文献   

17.
Complexation between 5,10,15,20-tetraphenylporphine H2TPP and tetra(tert-butyl)phthalocyanine H2(t-Bu)4Pc with copper(II) ethylenediaminetetraacetate in DMSO was studied by spectrophotometry. The kinetic parameters of the reaction were calculated and the mechanism of ligand exchange in the complexone-porphyrin macrocycle system was proposed. The reactivities of H2TPP and H2(t-Bu)4Pc in reactions with copper ethylenediaminetetraacetate and some other copper chelate complexes were compared.  相似文献   

18.
The title complex salt, (C16H36N)[MnBr(C32H16N8)] or (TBA)[MnIIBr(Pc)] (TBA is tetrabutylammonium and Pc is phthalocyaninate), has been obtained as single crystals by the diffusion technique and its crystal structure was determined using X‐ray diffraction. The high‐spin (S = ) [MnIIBr(Pc)] macrocycle has a concave conformation, with an average equatorial Mn—N(Pc) bond length of 2.1187 (19) Å, an axial Mn—Br bond length of 2.5493 (7) Å and with the MnII cation displaced out of the 24‐atom Pc plane by 0.894 (2) Å. The geometry of the MnIIN4 fragment in [MnIIBr(Pc)] is similar to that of the high‐spin (S = ) manganese(II) tetraphenylporphyrin (TPP) in [MnII(1‐MeIm)(TPP)] (1‐MeIm is 1‐methylimidazole).  相似文献   

19.
The effects of alkyloxy substituents attached to one phthalocyanine ligand of three heteroleptic bis(phthalocyaninato) yttrium complexes Y(Pc)[Pc(α‐OCH3)4] ( 1 ), Y(Pc)[Pc(α‐OCH3)8] ( 2 ), and Y(Pc)[Pc(β‐OCH3)8] ( 3 ), as well as their reduction products {Y(Pc)[Pc(α‐OCH3)4]}? ( 4 ), {Y(Pc)[Pc(α‐OCH3)8]}? ( 5 ), and {Y(Pc)[Pc(β‐OCH3)8]}? ( 6 ) [H2Pc(α‐OCH3)4=1,8,15,22‐tetrakis(methyloxy)phthalocyanine; H2Pc(α‐OCH3)8=1,4,8,11,15,18,22,25‐octakis(methyloxy)phthalocyanine; H2Pc(β‐OCH3)8=2,3,9,10,16,17,23,24‐octakis(methyloxy)phthalocyanine] are studied by DFT calculations. Good consistency is found between the calculated results and experimental data for the electronic absorption, IR, and Raman spectra of 1 and 3 . Introduction of electron‐donating methyloxy groups on one phthalocyanine ring of the heteroleptic double‐deckers induces structural deformation in both phthalocyanine ligands, electron transfer between the two phthalocyanine rings, changes in orbital energy and composition, shift of electronic absorption bands, and different vibrational modes of the unsubstituted and substituted phthalocyanine ligands in the IR and Raman spectra in comparison with the unsubstituted homoleptic counterpart Y(Pc)2. The calculations reveal that incorporation of methyloxy substituents at the nonperipheral positions has greater influence on the structure and spectroscopic properties of bis(phthalocyaninato) yttrium double‐deckers than at the peripheral positions, which increases with increasing number of substituents. Nevertheless, the substituent effect of alkyloxy substituents at one phthalocyanine ligand of the double‐decker on the unsubstituted phthalocyanine ring and on the whole molecule and the importance of the position and number of alkyloxy substituents are discussed. In addition, the effect of reducing 1 – 3 to 4 – 6 on the structure and spectroscopic properties of the bis(phthalocyaninato) yttrium compounds is also discussed. This systemic DFT study is not only useful for understanding the structure and spectroscopic properties of bis(phthalocyaninato) rare earth metal complexes but also helpful in designing and preparing double‐deckers with tunable structure and properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号