首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
New approaches have been proposed for the synthesis of compounds containing two bis(1H-pyrazol-1-yl)methane fragments. Nucleophilic replacement of the halogen atoms in appropriate tetrabromo derivatives by pyrazoles in the superbasic system KOH-DMSO gave ditopic chelating ligands: 1,1,2,2-tetrakis(1H-pyrazol-1-yl)ethane, 1,4-bis[bis(1H-pyrazol-1-yl)methyl]benzene, and 1,4-bis[bis(3,5-dimethyl-1H-pyrazol-1-yl)methyl]benzene. 1,4-Bis[bis(1H-pyrazol-1-yl)methyl]benzene was also synthesized by reaction of 1H-pyrazole with terephthalaldehyde in the presence of thionyl chloride. 1,1,2,2-Tetrakis(1H-pyrazol-1-yl)ethane was converted into the corresponding tetraiodo and tetranitro derivatives.  相似文献   

2.
Reactions of 3,6-bis(4-R-3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazines and 3-amino-6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,2,4,5-tetrazines with aliphatic alcohols and water in the presence of a base involved replacement of the dimethylpyrazolyl group and resulted in the formation of mono- and dialkoxy-1,2,4,5-tetrazines and 6-substituted 3-hydroxy-1,2,4,5-tetrazines. Dissociation constants of the latter were determined by potentiometric titration.  相似文献   

3.
Protonation of the highly reactive 1:1 intermediates, which are produced in the reaction between triphenylphosphine and dialkyl acetylenedicarboxylates, by 3,5-dimethylpyrazol leads to vinyltriphenylphosphonium salts, which undergo a Michael addition reaction with a conjugate base to produce dialkyl 2-(3,5-dimethyl1H-pyrazol-1-yl)-3-(triphenylphosphoranylidene)butanedioates. Dipotassium hydrogen phosphate powder was found to catalyze the stereoselective conversion of dialkyl 2-(3,5-dimethyl-1H-pyrazol-1-yl)-3-(triphenylphosphoranylidene) butanedioates to dialkyl 2-(3,5-dimethyl-1H-pyrazol-1-yl)-2-butenedioates in solvent-free conditions under microwave (0.6 KW, 3 min) and thermal (90°C, 60 min) conditions.  相似文献   

4.
Formylation of N-alkyl-3,5-dimethyl-1H-pyrazoles according to Vilsmeier-Haak led to the formation of the corresponding 4-formyl derivatives. 3,5-Dimethyl-1H-pyrazole having no substituent on the nitrogen atom failed to undergo formylation at the 4 position under analogous conditions. 3,5-Dimethyl-1H-pyrazole-4-carbaldehyde was synthesized by alkaline hydrolysis of methyl β-(4-formyl-3,5-dimethyl-1H-pyrazol-1-yl)propionate and subsequent heating of the acid thus formed.  相似文献   

5.
The reaction between ZnCl2 and N,N-bis[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-1-phenylethylamine (bdmppea) affords [(bdmppea)ZnCl2], whose structure has been determined by X-ray crystallography. The [(bdmppea)ZnEt2] complex in situ prepared by the reaction between [bdmppea] and ZnEt2 exhibited high activity toward the polymerization reaction of rac-lactide at room temperature. However, its activity decreased sharply with decreasing temperature. Stereospecificity of this catalyst characterized by heterotacticity (Pr) was determined by homonuclear decoupled NMR spectroscopy, which value was ∼0.58.  相似文献   

6.
In this study, we present the synthesis of 5-(3,5-dinitro-1H-pyrazol-4-yl)-1H-tetrazole and its energetic derivatives starting from 4-amino-3,5-dinitropyrazole, which was diazotized and cyanide substituted. A subsequent cycloaddition reaction with sodium azide led to 5-(3,5-dinitro-1H-pyrazol-4-yl)-1H-tetrazole ( 3 ). Several alkaline metal and nitrogen-rich salts were prepared and characterized by low-temperature X-ray diffraction. Additionally, all compounds were analyzed by vibrational spectroscopy (IR), 1H, 13C and 14N NMR spectroscopy, elemental analysis and differential thermal analysis (DTA). Additionally, the heats of formation for selected compounds were calculated using the atomization method based on CBS-4M enthalpies as well as important detonation parameters by using the EXPLO5 code (V6.05). Furthermore, the sensitivities of 3 and all synthesized salts toward friction, impact and electrostatic discharge according to BAM (Bundesamt für Materialforschung) were determined and compared to RDX.  相似文献   

7.
Methyl 2-(bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)amino) acetate, BT36, and methyl 2-(bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)amino)-3-(1H-indol-3-yl)propanoate, BT 43, have been synthesized. Investigation by weight-loss measurement and use of electrochemical techniques revealed the compounds are very effective inhibitors of corrosion of C38 steel in 1 M HCl solutions—percentage protection exceeded 95 % for BT43 at concentrations as low as 10?2 M. An impedance study in the absence and presence of these compounds revealed the mechanism of protection was cathodic inhibition by polarization and charge-transfer. The Langmuir adsorption isotherm was obeyed. Quantum chemical data calculated by use of DFT at the B3LYP/6-31G* level of theory revealed a good correlation between inhibition efficiency and the molecular structure of BT36 and BT43. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, the separation energy (ΔE), and the dipole moment (μ) from the inhibitor to the metal surface explain the experimental data well.  相似文献   

8.
The new PPA ligands 3-[5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]propanamide (CF3MePPA; 3 ) and 3-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]propanamide ((CF3)2PPA; 4 ) were synthesized by Aza-Michael addition of the specific pyrazole derivatives to acrylamide. Both products were characterized by elemental analyses, IR and NMR spectroscopy, and mass spectrometry. X-Ray structure determination of 3 revealed the presence of a one-dimensional hydrogen-bonded structure in the solid state. The ligating ability of the new ligands towards PdCl2 was studied, showing that 3 behaves similar to Me2PPA and reacts cleanly with PdCl2 to afford the sparingly soluble complex PdCl2(CF3MePPA-κN)2. By contrast, the donor ability of pyrazolyl group in 4 was found to be considerably reduced, thus resulting in the formation of the unusual complex PdCl2{(CF3)2PPA-κN}{(CF3)2PPA-κO}.  相似文献   

9.
Acylation of thiophene and phenol with 3,4,4-trichloro-3-butenoyl chloride afforded the corresponding 1-(thien-2-yl)- and 1-(4-hydroxyphenyl)-3,4,4-trichloro-3-buten-1-ones, whose reaction with amines led to the formation of 3-amino-1-(thien-2-yl, 4-hydroxyphenyl)-4,4-dichloro-2-buten-1-ones The heterocyclization of the initial ketones into pyrazole structure was not observed, and the reaction with hydrazine hydrate provided bispyrazole products, N,N′-bis(5-thien-2-yl)- and N,N′-bis[5-(4-hydroxyphenyl)-1H-pyrazol-3-ylmethylene]hydrazines.  相似文献   

10.
Substituted 5-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3-oxazole-4-carbonitrile differently react with nitrogen bases having different numbers of labile hydrogen atoms. Treatment of the title compounds with secondary amines or morpholine results in nucleophilic replacement of the pyrazolyl substituent at C5, the ozaxole ring remaining unchanged. Their reactions with primary amines are accompanied by cleavage of the oxazole ring with formation of the corresponding enamino nitriles. Hydrazine hydrate acts in a similar way, but enehydrazino nitriles thus formed undergo fast cyclization to give new 4,5-diaminopyrazole derivatives. The latter can be converted into substituted pyrazolo[1,5-a]pyrimidines whose structure has been proved by X-ray analysis.  相似文献   

11.
Reactions of 5-nitropyridin-2(1H)-one and its N-methyl derivative with hydrazine hydrate led to the formation of (1H-pyrazol-3-yl) acetohydrazide. Under analogous conditions, 1,3-dimethyl-5-nitropyridin2(1H)-one gave rise to 2-(1H-pyrazol-3-yl)propionohydrazide, while 6-methyl-5-nitropyridin-2(1H)-one was converted into (5-methyl-1H-pyrazol-3-yl)acetohydrazide. Hydrazinolysis of 4-methyl-5-nitropyridin-2(1H)-one resulted in the formation of 3-methyl-4-nitro-1H-pyrazole. The mechanism of recyclization of nitropyridine derivatives by the action of hydrazine hydrate was studied using 5-nitropyridin-2(1H)-one and 1-methyl-5-nitropyridin-2(1H)-one as examples.  相似文献   

12.
N-Allyl-5-amino-1H-pyrazole-4-carboxamides in reactions with polyphosphoric acid, with N-halosuccinimides in chloroform, and with (chlorosulfanyl)benzenes in nitromethane in the presence of lithium perchlorate underwent cyclization involving the N-allylamide fragment to give 4-[5-methyl(halomethyl)-4,5-dihydrooxazol-2-yl]-1H-pyrazol-5-amines and 2-(5-amino-1H-pyrazol-4-yl)-5-[(arylsulfanyl)methyl]-4,5-dihydro-1,3-oxazolium perchlorates, respectively. Analogous reactions of N-propargyl-5-amino-1H-pyrazole-4-carboxamides with polyphosphoric acid afforded 4-(5-methyloxazol-2-yl)-1H-pyrazol-5-amines, and with (chlorosulfanyl) benzenes, 2-(5-amino-1H-pyrazol-4-yl)-5-[(arylsulfanyl)methylidene]-4,5-dihydro-1,3-oxazolium perchlorates.  相似文献   

13.
The self-assembly of iron(III) chloride with three pyrazolyl-s-triazine ligands, namely 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)-1,3,5-triazine (PipBPT), 4-(4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)morpholine (MorphBPT), and 4,4’-(6-(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazine-2,4-diyl)dimorpholine (bisMorphPT) afforded [Fe(PipBPT)Cl2][FeCl4] (1), [Fe(MorphBPT)Cl2][FeCl4] (2), and [H(bisMorphPT)][FeCl4]. bisMorphPT.2H2O (3), respectively, in good yield. In complexes 1 and 2, the Fe(III) is pentacoordinated with three Fe-N interactions from the pincer ligand and two coordinated chloride anions in the inner sphere, and FeCl4¯ in the outer sphere. Complex 3 is comprised of one protonated ligand as cationic part, one FeCl4¯ anion, and one neutral bisMorphPT molecule in addition to two crystallized water molecules. Analysis of molecular packing using Hirshfeld calculations indicated that H…H and Cl…H are the most important in the molecular packing. They comprised 40.1% and 37.4%, respectively in 1 and 32.4% and 37.8%, respectively in 2. Complex 1 exhibited the most bioactivity against the tested microbes while 3 had the lowest bioactivity. The bisMorphPT and MorphBPT were inactive towards the tested microbes while PipBPT was active. As a whole, the Fe(III) complexes have enhanced antibacterial and antifungal activities as compared to the free ligands.  相似文献   

14.
Herein the synthesis of 3-(3,5-Dimethyl-1H-pyrazol-1-yl)butanal oxime (L) and its complex formation with PdCl2 is studied. IR and 1Н NMR spectroscopic methods as well as X-ray diffraction analysis (СIF file CCDC no. 1531058) elucidate that the nitrogen atoms N(4) and N(15) from pyrazole and imine group of oxime respectively, participate in coordination with PdCl2. Moreover, primarily thermal stability test shows that [PdCl2(L)] complex (I) is quite stable at moderate temperatures and intense decomposition of latter occurs ca 200–210°C. As a consequence of thermal decomposition, both volatile ligand and its dehydration by-product 3-(3,5-dimethyl-1H-pyrazol-1-yl)butanenitrile are formed. Afterwards, the anticonvulsant properties of PdCl2, L, and I are of interest and well studied in this section.  相似文献   

15.
Two new N-pyrazole, P-phosphinite hybrid ligands 3-(3,5-dimethyl-1H-pyrazol-1-yl)propyldiphenylphosphinite (L3) and 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L4) are presented. The reactivity of these ligands and two other ligands reported in the literature (3,5-dimethyl-1H-pyrazol-1-yl)methyldiphenylphosphinite (L1) and 2-(3,5-dimethyl-1H-pyrazol-1-yl)ethyldiphenylphosphinite (L2) towards [RhCl(CO)2]2 (1) have been studied and complexes [RhCl(CO)L] (L = L2 (2), L3 (3) and L4 (4)) have been obtained. For L1 only decomposition products have been achieved. All complexes were fully characterised by analytical and spectroscopic methods and the resolution of the crystalline structure of complexes 2 and 3 by single-crystal X-ray diffraction are also presented. In these complexes, the ligands are coordinated via κ2(N,P) to Rh(I), forming metallocycles of seven (2 and 4) or eight (3) members and finish its coordination with a carbonyl monoxide and a trans-chlorine to phosphorus atom. In both complexes, weak intermolecular interactions are present. NMR studies of complexes 2-4 show the chain N-(CH2)x-O becomes rigid and the protons diastereotopic.  相似文献   

16.
A convenient preparation of 5-amino-1,3-dialkylpyrazol-4-yl heterocyclic ketones is reported. They are prepared from the reaction of heterocyclic esters with the di-lithio derivative from N-(4-bromo-1,3-dimethyl-1H-pyrazol-5-yl)benzamide ( 1 ).  相似文献   

17.
A series of new (E)-1-{2-[(1-benzyl-1H-1,2,3-triazol-4-yl)methoxy]phenyl}-3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-ones (3a–3i) has been synthesized via copper-catalyzed 1,3-dipolar azide-alkyne cycloaddition reaction (CuAAC) of benzyl azide with substituted (E)-3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-1-[2-(prop-2-ynyloxy)phenyl]prop-2-en-1-ones (2a–2i). The synthesized compounds have been characterized by their IR, lH, 13C NMR spectra, and mass spectroscopy data. All the compounds have been screened for antimicrobial activity.  相似文献   

18.
A four-step procedure has been developed for the synthesis of new 2-(2,3,3-trimethyl-1,2,3,4-tetrahydroisoquinolin-1-yl)anilines by acylation of 2-(3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)anilines at the amino group with isobutyryl chloride, reduction of the endocyclic C=N bond in N-[2-(3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)phenyl]isobutyramides, N-alkylation of N-[2-(3,3-dimethyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phenyl]isobutyramides to N-[2-(2,3,3-trimethyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phenyl]isobutyramides, and acid hydrolysis of the latter.  相似文献   

19.
The stereoselective properties of modified thiourea organocatalysts were tested in the Friedel–Crafts alkylation of indole with 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones, which produces chiral 5-((1H-indol-3-yl)(aryl)methyl)-2,2-dimethyl-1,3-dioxane-4,6-diones. Based on a tentative reaction mechanism for ((S)-N-benzyl-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-N,3,3-trimethylbutanamide organocatalysts, modifications were applied in four selected regions. Systematic structure-stereoselectivity relationship study allowed designing the best efficient organocatalyst for the investigated Friedel–Crafts alkylation of indole with 5-arylidene-2,2-dimethyl-1,3-dioxane-4,6-diones.  相似文献   

20.
6(8)-Substituted 4-hydrazino-2-methylquinolines were synthesized by reaction of the corresponding 4-chloro-2-methylquinolines with hydrazine hydrate. Reactions of the title compounds with ethyl acetoacetate and acetone gave 2,4-dimethyl-1H-pyrrolo[3,2-c]quinolines and 4-(5-ethoxy-3-methyl-1H-pyrazol-1-yl)-2-methylquinolines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号