首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We find the asymptotic behavior of the homogenized coefficients of elasticity for the chess-board structure. In the chess board white and black cells are isotropic and have Lamé constants (, ,) and (, ) respectively. We assume that the black cells are soft, so 0. It turns out that the Poisson ratio for this composite tends to zero with .  相似文献   

2.
Summary Two-dimensional stress singularities in wedges have already drawn attention since a long time. An inverse square-root stress singularity (in a 360° wedge) plays an important role in fracture mechanics.Recently some similar three-dimensional singularities in conical regions have been investigated, from which one may be also important in fracture mechanics.Spherical coordinates are r, , . The conical region occupied by the elastic homogeneous body (and possible anisotropic) has its vertex at r=0. The mantle of the cone is described by an arbitrary function f(, )=0. The displacement components be u. For special values of (eigenvalues) there exist states of displacements (eigenstates) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakabbaaa6daaahjxzL5gapeqa% aiaadwhadaWgaaWcbaGaeqOVdGhabeaakiabg2da9iaadkhadaahaa% WcbeqaaiabeU7aSbaakiaadAgadaWgaaWcbaGaeqOVdGhabeaakiaa% cIcacqaH7oaBcaGGSaGaeqiUdeNaaiilaiabfA6agjaacMcaaaa!582B!\[u_\xi = r^\lambda f_\xi (\lambda ,\theta ,\Phi )\],which may satisfy rather arbitrary homogeneous boundary conditions along the generators.The paper brings a theorem which expresses that if is an eigenvalue, then also-1- is an eigenvalue. Though the theorem is related to a known theorem in Potential Theory (Kelvin's theorem), the proof has to be given along quite another line.
Zusammenfassung Zwei-dimensionale Spannungssingularitäten in keilförmigen Gebieten sind schon längere Zeit untersucht worden und neuerdings auch ähnliche drei-dimensionale Singularitäten in konischen Gebieten.Kugelkoordinaten sind r, , . Das konische Gebiet hat seine Spitze in r=0. Der Mantel des Kegels lässt sich beschreiben mittels einer willkürlichen Funktion f(, )=0. Die Verschiebungskomponenten seien u. Für spezielle Werte von (Eigenwerte) bestehen Verschiebunszustände % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakabbaaa6daaahjxzL5gapeqa% aiaadwhadaWgaaWcbaGaeqOVdGhabeaakiabg2da9iaadkhadaahaa% WcbeqaaiabeU7aSbaakiaadAgadaWgaaWcbaGaeqOVdGhabeaakiaa% cIcacqaH7oaBcaGGSaGaeqiUdeNaaiilaiabfA6agjaacMcaaaa!582B!\[u_\xi = r^\lambda f_\xi (\lambda ,\theta ,\Phi )\],welche homogene Randwerte der Beschreibenden des Kegels entlang genügen.Das Bericht bringt ein Theorem, welches aussagt, das und =–1– beide Eigenwerte sind.
  相似文献   

3.
In a previous derivation of Darcy's law, the closure problem was presented in terms of an integro-differential equation for a second-order tensor. In this paper, we show that the closure problem can be transformed to a set of Stokes-like equations and we compare solutions of these equations with experimental data. The computational advantages of the transformed closure problem are considerable.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the averaging volume, m2 - B second-order tensor used to respresent the velocity deviation - b vector used to represent the pressure deviation, m–1 - C second-order tensor related to the permeability tensor, m–2 - D second-order tensor used to represent the velocity deviation, m2 - d vector used to represent the pressure deviation, m - g gravity vector, m/s2 - I unit tensor - K C –1,–D, Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - l i i=1, 2, 3, lattice vectors, m - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - p pressure in the-phase, N/m 2 - p intrinsic phase average pressure, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r position vector locating points in the-phase, m - r 0 radius of the averaging volume, m - t time, s - v velocity vector in the-phase, m/s - v intrinsic phase average velocity in the-phase, m/s - v phase average or Darcy velocity in the \-phase, m/s - v v , spatial deviation of the velocity in the-phase m/s - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 Greek Letters V /V volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2  相似文献   

4.
The results of laboratory observations of the deformation of deep water gravity waves leading to wave breaking are reported. The specially developed visualization technique which was used is described. A preliminary analysis of the results has led to similar conclusions than recently developed theories. As a main fact, the observed wave breaking appears as the result of, first, a modulational instability which causes the local wave steepness to approach a maximum and, second, a rapidly growing instability leading directly to the breaking.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness =H/L - crest steepness =/L - trough steepness =/L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness =/F 1 - crest rear steepness =/F 2 - vertical asymmetry factor=F 2/F 1 (describing the wave asymmetry with respect to a vertical axis through the wave crest) - µ horizontal asymmetry factor=/H (describing the wave asymmetry with respect to a horizontal axis: SWL) - T 0 wavemaker period - L 0 theoretical wave length of a small amplitude sinusoïdal wave generated at T inf0 sup–1 frequency - 0 average wave height  相似文献   

5.
In this paper we consider the asymptotic behavior of solutions of the quasilinear equation of filtration as t. We prove that similar solutions of the equation u t = (u )xx asymptotically represent solutions of the Cauchy problem for the full equation u t = [(u)]xx if (u) is close to u for small u.  相似文献   

6.
The paper presents an exact analysis of the dispersion of a passive contaminant in a viscous fluid flowing in a parallel plate channel driven by a uniform pressure gradient. The channel rotates about an axis perpendicular to its walls with a uniform angular velocity resulting in a secondary flow. Using a generalized dispersion model which is valid for all time, we evaluate the longitudinal dispersion coefficientsK i (i=1, 2, ...) as functions of time. It is shown thatK 1=0 andK 3,K 4, ... decay rapidly in comparison withK 2. ButK 2 decreases with increasing (the dimensionless rotation parameter) for values of upto approximately =2.2. ThereafterK 2 increases with further increase in and its value gets saturated for large values of (say, 500) and does not change any further with increase in . A physical explanation of this anomalous behaviour ofK 2 is given.
Instationäre konvektive Diffusion in einem rotierenden Parallelplattenkanal
Zusammenfassung In dieser Untersuchung wird eine exakte Analyse der Ausbreitung eines passiven Kontaminierungsstoffes in einer zähen Flüssigkeit gegeben, die, befördert durch einen gleichförmigen Druckgradienten, in einem Parallelplattenkanal strömt. Der Kanal rotiert mit gleichförmiger Winkelgeschwindigkeit um eine zu seinen Wänden senkrechte Achse, wodurch sich eine Sekundärströmung ausbildet. Unter Verwendung eines generalisierten, für alle Zeiten gültigen Dispersionsmodells werden die longitudinalen DispersionskoeffizientenK i (i=1, 2, ...) als Funktionen der Zeit ermittelt. Es wird gezeigt, daßK 1=0 gilt und dieK 3,K 4, ... gegenüberK 2 schnell abnehmen.K 2 nimmt ab, wenn , der dimensionslose Rotationsparameter, bis etwa zum Wert 2,2 ansteigt. Danach wächstK 2 mit bis auf einem Endwert an, der etwa ab =500 erreicht wird. Dieses anomale Verhalten vonK 2 findet eine physikalische Erklärung.

List of symbols C solute concentration - D molecular diffusivity - K i longitudinal dispersion coefficients - 2L depth of the channel - P 0 dimensionless pressure gradient along main flow - Pe Péclet number - q velocity vector - Q x,Q y mass flux along the main flow and the secondary flow directions - dimensionless average velocity along the main flow direction - (x, y, z) Cartesian co-ordinates Greek symbols dimensionless rotation parameter - the inclination of side walls withx-axis - kinematic viscosity - fluid density - dimensionless time - angular velocity of the channel - dimensionless distance along the main flow direction - dimensionless distance along the vertical direction - dimensionless solute concentration - integral of the dispersion coefficientK 2() over a time interval  相似文献   

7.
This paper discusses the asymptotic behavior as 0+ of the chemical potentials associated with solutions of variational problems within the Van der Waals-Cahn-Hilliard theory of phase transitions in a fluid with free energy, per unit volume, given by 2¦¦2+ W(), where is the density. The main result is that is asymptotically equal to E/d+o(), with E the interfacial energy, per unit surface area, of the interface between phases, the (constant) sum of principal curvatures of the interface, and d the density jump across the interface. This result is in agreement with a formula conjectured by M. Gurtin and corresponds to the Gibbs-Thompson relation for surface tension, proved by G. Caginalp within the context of the phase field model of free boundaries arising from phase transitions.  相似文献   

8.
The results of the hydraulic studies of gas-liquid media, wave processes in two-phase media and critical phenomena are described. Some methodological foundations to describe these media and methods to obtain the basic similarity criteria for the hydraulics and gas-dynamics of bubble suspensions are discussed. A detailed consideration is given for the phase transition processes on interfaces and the interface stability. A relation has been revealed between the wave and critical phenomena in two-phase systems.Nomenclature a thermal diffusivity - Ar Archimedes number - B gas constant - C heat capacity - C p heat capacity at constant pressure - C v heat capacity at constant volume - c 0 acoustic velocity in the mixture - c l acoustic velocity in the liquid - C f flow resistance coefficient - G mass rate of flow - g gravitational acceleration - L latent heat of evaporation - l initial perturbation width - M Mach number - Nu Nusselt number - P pressure - Pr Prandtl number - R bubble radius - (3P 0/R 0 2 f )–1 bubble resonance frequency square - T temperature - U medium motion velocity - W heavy phase velocity - W light phase velocity - We Weber number - heat release coefficient - dispersion coefficient - void fraction - adiabatic index - film thickness - dimensionless film thickness - kinematic viscosity coefficient - dynamical viscosity coefficient - dissipation coefficient in the mixture - dispersion parameter - f liquid phase density - light phase density - heat conductivity - surface tension - frequency, 0 2 =3P 0/ f R 0 2  相似文献   

9.
The effective length method [1, 2] has been used to make systematic calculations of the heat transfer for laminar and turbulent boundary layers on slender blunt-nosed cones at small angles of attack ( + 5° in a separationless hypersonic air stream dissociating in equilibrium (half-angles of the cones 0 20°, angles of attack 0 15°, Mach numbers 5 M 25). The parameters of the gas at the outer edge of the boundary layer were taken equal to the inviscid parameters on the surface of the cones. Analysis of the results leads to simple approximate dependences for the heat transfer coefficients.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 173–177, September–October, 1981.  相似文献   

10.
Summary The subject of this article is the thermodynamics of perfect elastic-plastic materials undergoing unidimensional, but not necessarily isothermal, deformations. The first and second laws of thermodynamics are employed in a form in which only the following quantities appear: the temperature , the elastic strain e, the plastic strain p, the elastic modulus (gq), the yield strain (gq), the heat capacity (e, p,), the latent elastic heat e(e, p, ), and the latent plastic heat p(e, p, ). Relations among the response functions , , , e, and p are derived, and it is shown that a set of these relations gives a necessary and sufficient condition for compliance with the laws of thermodynamics. Some observations are made about the existence and uniqueness of energy and entropy as functions of state.Dedicated to Clifford Truesdell on the occasion of his 60th birthdayThis research was supported by the U.S. National Science Foundation.  相似文献   

11.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

12.
Summary The effects of superposing streamwise vorticity, periodic in the lateral direction, upon two-dimensional asymptotic suction flow are analyzed. Such vorticity, generated by prescribing a spanwise variation in the suction velocity, is known to play an important role in unstable and turbulent boundary layers. The flow induced by the variation has been obtained for a freestream velocity which (i) is steady, (ii) oscillates periodically in time, (iii) changes impulsively from rest. For the oscillatory case it is shown that a frequency can exist which maximizes the induced, unsteady wall shear stress for a given spanwise period. For steady flow the heat transfer to, or from a wall at constant temperature has also been computed.Nomenclature (x, y, z) spatial coordinates - (u, v, w) corresponding components of velocity - (, , ) corresponding components of vorticity - t time - stream function for v and w - v w mean wall suction velocity - nondimensional amplitude of variation in wall suction velocity - characteristic wavenumber for variation in direction of z - T temperature - P pressure - density - coefficient of kinematic viscosity - coefficient of thermal diffusivity - (/v w)2 - frequency of oscillation of freestream velocity - nondimensional amplitude of freestream oscillation - /v w 2 - z z - yv w y/ - v w 2 t/4 - /v w - U 0 characteristic freestream velocity - u/U 0 - coefficient of viscosity - w wall shear stress - Prandtl number (/) - q heat transfer to wall - T w wall temperature - T (T wT)/(T w–)  相似文献   

13.
The theory of a vibrating-rod densimeter   总被引:1,自引:0,他引:1  
The paper presents a theory of a device for the accurate determination of the density of fluids over a wide range of thermodynamic states. The instrument is based upon the measurement of the characteristics of the resonance of a circular section tube, or rod, performing steady, transverse oscillations in the fluid. The theory developed accounts for the fluid motion external to the rod as well as the mechanical motion of the rod and is valid over a defined range of conditions. A complete set of working equations and corrections is obtained for the instrument which, together with the limits of the validity of the theory, prescribe the parameters of a practical design capable of high accuracy.Nomenclature A, B, C, D constants in equation (60) - A j , B j constants in equation (18) - a j + , a j wavenumbers given by equation (19) - C f drag coefficient defined in equation (64) - C f /0 , C f /1 components of C f in series expansion in powers of - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - force per unit length - F j + , F j constants in equation (24) - f, g functions of defined in equations (56) - G modulus of rigidity - I second moment of area - K constant in equation (90) - k, k constants defined in equations (9) - L half-length of oscillator - Ma Mach number - m a mass per unit length of fluid a - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equation (17) - P power (energy per cycle) - P a , P b power in fluids a and b - p pressure - R radius of rod or outer radius of tube - R c radius of container - R i inner radius of tube - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - z axial coordinate - dimensionless tension - a dimensionless mass of fluid a - b dimensionless added mass of fluid b - b dimensionless drag of fluid b - dimensionless parameter associated with - 0 dimensionless coefficient of internal damping - dimensionless half-width of resonance curve - dimensionless frequency difference defined in equation (87) - spatial resolution of amplitude - R, , , s , increments in R, , , s , - dimensionless amplitude of oscillation - dimensionless axial coordinate - ratio of to - a , b ratios of to for fluids a and b - angular coordinate - parameter arising from distortion of initially plane cross-sections - f thermal conductivity of fluid - dimensionless parameter associated with - viscosity of fluid - a , b viscosity of fluids a and b - dimensionless displacement - j jth component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - density of fluid calculated on assumption that * - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - rr rr, r radial normal and shear stress components - spatial component of defined in equation (13) - j jth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - phase angle - r phase difference - ra , rb phase difference for fluids a and b - streamfunction - j jth component defined in equation (22) - dimensionless frequency (based on ) - a , b dimensionless frequency in fluids a and b - s dimensionless frequency (based on s ) - angular frequency - 0 resonant frequency in absence of fluid and internal damping - r resonant frequency in absence of internal fluid - ra , rb resonant frequencies in fluids a and b - dimensionless frequency - dimensionless frequency when a vanishes - dimensionless frequencies when a vanishes in fluids a and b - dimensionless resonant frequency when a , b, b and 0 vanish - dimensionless resonant frequency when a , b and b vanish - dimensionless resonant frequency when b and b vanish - dimensionless frequencies at which amplitude is half that at resonance  相似文献   

14.
AREGULARITYTHEOREMFORCERTAINFOURTH-ORDERDIFFERENTIALOPERATOR¥LiuYingran(刘颖范)(NanjingUniversityofAeronauticsandAstronautics.Na...  相似文献   

15.
Zusammenfassung Zur Berechnung turbulenter Strömungen wird das k--Modell im Ansatz für die turbulente Scheinzähigkeit erweitert, so daß es den Querkrümmungs- und Dichteeinfluß auf den turbulenten Transportaustausch erfaßt. Die dabei zu bestimmenden Konstanten werden derart festgelegt, daß die bestmögliche Übereinstimmung zwischen Berechnung und Messung erzielt wird. Die numerische Integration der Grenzschichtgleichungen erfolgt unter Verwendung einer Transformation mit dem Differenzenverfahren vom Hermiteschen Typ. Das erweiterte Modell wird auf rotationssymmetrische Freistrahlen veränderlicher Dichte angewendet und zeigt Übereinstimmung zwischen Rechnung und Experiment.
On the influence of transvers-curvature and density in inhomogeneous turbulent free jets
The prediction of turbulent flows based on the k- model is extended to include the influence of transverse-curvature and density on the turbulent transport mechanisms. The empirical constants involved are adjusted such that the best agreement between predictions and experimental results is obtained. Using a transformation the boundary layer equations are solved numerically by means of a finite difference method of Hermitian type. The extended model is applied to predict the axisymmetric jet with variable density. The results of the calculations are in agreement with measurements.

Bezeichnungen Wirbelabsorptionskoeffizient - ci Massenkonzentration der Komponente i - cD, cL, c, c1, c2 Konstanten des Turbulenzmodells - d Düsendurchmesser - E bezogene Dissipationsrate - f bezogene Stromfunktion - f Korrekturfunktion für die turbulente Scheinzähigkeit - j turbulenter Diffusionsstrom - k Turbulenzenergie - ki Schrittweite in -Richtung - K dimensionslose Turbulenzenergie - L turbulentes Längenmaß - Mi Molmasse der Komponente i - p Druck - allgemeine Gaskonstante - r Querkoordinate - r0,5 Halbwertsbreite der Geschwindigkeit - r0,5c Halbwertsbreite der Konzentration - T Temperatur - u Geschwindigkeitskomponente in x-Richtung - v Geschwindigkeitskomponente in r-Richtung - x Längskoordinate - y allgemeine Funktion - Yi diskreter Wert der Funktion y - Relaxationsfaktor für Iteration - turbulente Dissipationsrate - transformierte r-Koordinate - kinematische Zähigkeit - Exponent - transformierte x-Koordinate - Dichte - k, Konstanten des Turbulenzmodells - Schubspannung - allgemeine Variable - Stromfunktion - Turbulente Transportgröße Indizes 0 Strahlanfang - m auf der Achse - r mit Berücksichtigung der Krümmung - t turbulent - mit Berücksichtigung der Dichte - im Unendlichen - Schwankungswert oder Ableitung einer Funktion - – Mittelwert Herrn Professor Dr.-Ing. R. Günther zum 70. Geburtstag gewidmet  相似文献   

16.
It is proposed to investigate the stability of a plane axisymmetric flow with an angular velocity profile (r) such that the angular velocity is constant when r < rO – L and r > rO + L but varies monotonically from 1 to 2 near the point rO, the thickness of the transition zone being small L rO, whereas the change in velocity is not small ¦21¦ 2, 1. Obviously, as L O short-wave disturbances with respect to the azimuthal coordinate (k=m/rO 1/rO) will be unstable with a growth rate-close to the Kelvin—Helmholtz growth rate. In the case L=O (i.e., for a profile with a shear-discontinuity) we find the instability growth rate O and show that where the thickness of the discontinuity L is finite (but small) the growth rate does not differ from O up to terms proportional to kL 1 and 1/m 1. Using this example it is possible to investigate the effect of rotation on the flow stability. It is important to note that stabilization (or destabilization) of the flow in question by rotation occurs only for three-dimensional or axisymmetric perturbations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 111–114, January–February, 1985.  相似文献   

17.
Summary TheCross equation describes the flow of pseudoplastic liquids in terms of an upper and a lower Newtonian viscosity corresponding to infinite and zero shear, and 0, and of a third material constant related to the mechanism of rupture of linkages between particles in the intermediate, non-Newtonian flow regime, Calculation of of bulk polymers is important, since it cannot be determined experimentally. The equation was applied to the melt flow data of two low density polyethylenes at three temperatures.Using data in the non-Newtonian region covering 3 decades of shear rate to extrapolate to the zero-shear viscosity resulted in errors amounting to about onethird of the measured 0 values. The extrapolated upper Newtonian viscosity was found to be independent of temperature within the precision of the data, indicating that it has a small activation energy.The 0 values were from 100 to 1,400 times larger than the values at the corresponding temperatures.The values of were large compared to the values found for colloidal dispersions and polymer solutions, but decreased with increasing temperature. This shows that shear is the main factor in reducing chain entanglements, but that the contribution of Brownian motion becomes greater at higher temperatures.
Zusammenfassung Die Gleichung vonCross beschreibt das Fließverhalten von pseudoplastischen Flüssigkeiten durch drei Konstante: Die obereNewtonsche Viskosität (bei sehr hohen Schergeschwindigkeiten), die untereNewtonsche Viskosität 0 (bei Scherspannung Null), und eine Materialkonstante, die vom Brechen der Bindungen zwischen Partikeln im nicht-Newtonschen Fließbereich abhängt. Die Berechnung von ist wichtig für unverdünnte Polymere, wo man sie nicht messen kann.Die Gleichung wurde auf das Fließverhalten der Schmelzen von zwei handelsüblichen Hochdruckpolyäthylenen bei drei Temperaturen angewandt. Die Werte von 0, durch Extrapolation von gemessenen scheinbaren Viskositäten im Schergeschwindigkeitsbereich von 10 bis 4000 sec–1 errechnet, wichen bis 30% von den gemessenen 0-Werten ab. Die Aktivierungsenergie der war so klein, daß die-Werte bei den drei Temperaturen innerhalb der Genauigkeit der Extrapolation anscheinend gleich waren. Die 0-Werte waren 100 bis 1400 mal größer als die-Werte.Im Verhältnis zu kolloidalen Dispersionen und verdünnten Polymerlösungen war das der Schmelzen groß, nahm aber mit steigender Temperatur ab. Deshalb wird die Verhakung der Molekülketten hauptsächlich durch Scherbeanspruchung vermindert, aber der Beitrag derBrownschen Bewegung nimmt mit steigender Temperatur zu.
  相似文献   

18.
Summary The cooling of a hot fluid in laminar Newtonian flow through cooled elliptic tubes has been calculated theoretically. Numerical data have been computed for the two values 1.25 and 4 of the axial ratio of the elliptic cross-section . For =1.25 the influence of non-zero thermal resistance between outmost fluid layer and isothermal surroundings has also been investigated. Special attention has been given to the distribution of heat flux around the perimeter; when increases the flux varies more with the position at the circumference. This positional dependence becomes less pronounced, however, as the (position-independent) thermal resistance of the wall increases.Flattening of the conduit, while maintaining its cross-sectional area constant, improves the cooling. Comparison with rectangular pipes shows that this improvement is not as marked with elliptic as with rectangular pipes.Nomenclature A k =A m, n coefficients of expansion (6) - a, b half-axes of ellipse, b<a - a p =a r, s coefficients of representation (V) - D hydraulic diameter, = 4S/P; S = cross-sectional area, P = perimeter - D e equivalent diameter, according to (13) - n coordinate (outward) normal to the tube wall - T temperature of fluid - T i temperature of fluid at the inlet - T s temperature of surroundings - v 0 mean velocity of fluid - v z longitudinal velocity of fluid - x, y carthesian coordinates coinciding with axes of ellipse - z coordinate in flow direction - , dimensionless half-axes of ellipse, =a/D and =b/D - t heat transfer coefficient from fluid at bulk temperature to surroundings; equation (11) - w heat transfer coefficient at the wall; equation (3) - axial ratio of ellipse, = a/b = / - , , , dimensionless coordinates; =x/D, =y/D, =z/D, =n/D - dimensionless temperature, = (T–T s)/(T iT s) - 0 cup-mixing mean value of ; equation (10) - thermal conductivity of fluid - m,n = k eigenvalue - c volumetric heat capacity of fluid - m, n = k = k eigenfunction; equations (6) and (I) - Nu total Nusselt number, = t D/ - Nusselt number at large distance from the inlet - Nu w wall Nusselt number, = w D/, based on w - Pé Péclet number, = 0 Dc/  相似文献   

19.
A solution is obtained for the relationship between load, displacement and inner contact radius for an axisymmetric, spherically concave, rigid punch, indenting an elastic half-space. Analytic approximations are developed for the limiting cases in which the ratio of the inner and outer radii of the annular contact region is respectively small and close to unity. These approximations overlap well at intermediate values. The same method is applied to the conically concave punch and to a punch with a central hole. , , . , . . .  相似文献   

20.
A mixed convection parameter=(Ra) 1/4/(Re)1/2, with=Pr/(1+Pr) and=Pr/(1 +Pr)1/2, is proposed to replace the conventional Richardson number, Gr/Re2, for combined forced and free convection flow on an isothermal vertical plate. This parameter can readily be reduced to the controlling parameters for the relative importance of the forced and the free convection,Ra 1/4/(Re 1/2 Pr 1/3) forPr 1, and (RaPr)1/2/(RePr 1/2 forPr 1. Furthermore, new coordinates and dependent variables are properly defined in terms of, so that the transformed nonsimilar boundary-layer equations give numerical solutions that are uniformly valid over the entire range of mixed convection intensity from forced convection limit to free convection limit for fluids of any Prandtl number from 0.001 to 10,000. The effects of mixed convection intensity and the Prandtl number on the velocity profiles, the temperature profiles, the wall friction, and the heat transfer rate are illustrated for both cases of buoyancy assisting and opposing flow conditions.
Mischkonvektion an einer vertikalen Platte für Fluide beliebiger Prandtl-Zahl
Zusammenfassung Für die kombinierte Zwangs- und freie Konvektion an einer isothermen senkrechten Platte wird ein Mischkonvektions-Parameter=( Ra) 1/4 (Re)1/2, mit=Pr/(1 +Pr) und=Pr/(1 +Pr)1/2 vorgeschlagen, den die gebräuchliche Richardson-Zahl, Gr/Re2, ersetzen soll. Dieser Parameter kann ohne weiteres auf die maßgebenden Kennzahlen für den relativen Einfluß der erzwungenen und der freien Konvektion reduziert werden,Ra 1/4/(Re 1/2 Pr 1/3) fürPr 1 und (RaPr)1/4/(RePr)1/2 fürPr 1. Weiterhin werden neue Koordinaten und abhängige Variablen als Funktion von definiert, so daß für die transformierten Grenzschichtgleichungen numerische Lösungen erstellt werden können, die über den gesamten Bereich der Mischkonvektion, von der freien Konvektion bis zur Zwangskonvektion, für Fluide jeglicher Prandtl-Zahl von 0.001 bis 10.000 gleichmäßig gültig sind. Der Einfluß der Intensität der Mischkonvektion und der Prandtl-Zahl auf die Geschwindigkeitsprofile, die Temperaturprofile, die Wandreibung und den Wärmeübergangskoeffizienten werden für die beiden Fälle der Strömung in und entgegengesetzt zur Schwerkraftrichtung dargestellt.

Nomenclature C f local friction coefficient - C p specific heat capacity - f reduced stream function - g gravitational acceleration - Gr local Grashoff number,g T w –T )x3/v2 - Nu local Nusselt number - Pr Prandtl number,v/ - Ra local Rayleigh number,g T w –T x 3/( v) - Re local Reynolds number,u x/v - Ri Richardson number,Gr/Re 2 - T fluid temperature - T w wall temperature - T free stream temperature - u velocity component in thex direction - u free stream velocity - v velocity component in they direction - x vertical coordinate measuring from the leading edge - y horizontal coordinate Greek symbols thermal diffusivity - thermal expansion coefficient - mixed convection parameter (Ra)1/4/Re)1/2 - pseudo-similarity variable,(y/x) - 0 conventional similarity variable,(y/x)Re 1/2 - dimensionless temperature, (T–T T W –T - unified mixed-flow parameter, [(Re) 1/2 + (Ra)1/4] - dynamic viscosity - kinematic viscosity - stretched streamwise coordinate or mixed convection parameter, [1 + (Re)1/2/(Ra) 1/4]–1=/(1 +) - density - Pr/(1 + Pr) w wall shear stress - stream function - Pr/(l+Pr)1/3 This research was supported by a grand from the National Science Council of ROC  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号