首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrolysis kinetics of the anion in 3d-element cyclotetraphosphates is considered. The thermodynamic functions of formation (Δ f H 0, Δ f G 0, and Δ f ? at 0 ) of the cyclotetraphosphates are calculated using the ion increment method. A linear correlation is established between and log K Δ f ? at 0 for these compounds.  相似文献   

2.
A method has been purposed to calculate some of the thermodynamic quantities for the thermal deformation of a smectite without using any basic thermodynamic data. The Hanç?l? (Keskin, Ankara, Turkey) bentonite containing a smectite of 88% by volume was taken as material. Thermogravimetric (TG) and differential thermal analysis (DTA) curves of the sample were obtained. Bentonite samples were heated at various temperatures between 25–900°C for the sufficient time (2 h) until to establish the thermal deformation equilibrium.Cation-exchange capacity (CEC) of heated samples was determined by using the methylene blue standard method. The CEC was used as a variable of the equilibrium. An arbitrary equilibrium constant (K a) was defined similar to chemical equilibrium constant and calculated for each temperature by using the corresponding CEC-value. The arbitrary changes in Gibbs energy (ΔG a 0 ) were calculated from K a-values. The real change in enthalpy (ΔH 0) and entropy (ΔS 0) was calculated from the slopes of the lnK vs. 1/T and ΔG vs. T plots, respectively. The real changes in Gibbs energy (ΔG 0) and real equilibrium constant (K) were calculated by using the ΔH 0 and ΔS 0 values. The results at the two different temperature intervals are summarized as below: ΔG 1 0 H 1 0 S 1 0 T=?RTlnK 1=47000?53t, (200–450°C), and ΔG 2 0 H 2 0 S 2 0 T=?RTlnK 2=132000?164T, (500–800°C).  相似文献   

3.
Modelling of proton and metal exchange in the alginate biopolymer   总被引:1,自引:0,他引:1  
Acid–base behaviour of a commercial sodium alginate extracted from brown seaweed (Macrocystis pyrifera) has been investigated at different ionic strengths (0.1≤I/mol l?1≤1.0) and in different supporting electrolytes (Et4NI, NaCl, KCl, LiCl, NaCl+MgCl2), with the aim of examining the influence of ionic medium on the proton-binding capacity and of quantifying the strength of interaction with light metal ions in the perspective of speciation studies in natural aqueous systems. Potentiometric ([H+]-glass electrode) and titration calorimetric data were expressed as a function of the dissociation degree (α) using different models (Henderson–Hasselbalch modified, Högfeldt three parameters and linear equations). The dependence on ionic strength of the protonation constants was taken into account by a modified specific interaction theory model. Differences among different media were explained in terms of the interaction between polyanion and metal cations of the supporting electrolytes. Quantitative information on the proton-binding capacity, together with the stabilities of different species formed, is reported. Protonation thermodynamic parameters, at α=0.5, are log K H=3.686±0.005, ΔG 0=?21.04±0.03 kJ mol?1, ΔH 0=4.8±0.2 kJ mol?1 and TΔS 0=35.7±0.3 kJ mol?1, at infinite dilution. Protonation enthalpies indicate that the main contribution to proton binding arises from the entropy term. A strict correlation between ΔG and TΔS was found, TΔS=?9.5–1.73 ΔG. Results are reported in light of building up a chemical complexation model of general validity to explain the binding ability of naturally occurring polycarboxylate polymers and biopolymers. Speciation profiles of alginate in the presence of sodium and magnesium ions, naturally occurring cations in natural waters, are also reported.  相似文献   

4.
Bis-(3,3-dinitroazetidinyl)-oxamide ((DNAZ-CO)2) is an acyl derivative of 3,3-dinitroazetidine (DNAZ). It is prepared and its crystal structure is determined. The crystal is orthorhombic, Fdd2 space group, a = 13.136(14) Å, b = 19.48(3) Å, c = 10.326(14) Å, V = 2642 (6) Å3, Z = 8. A density functional theory (DFT) method of the Amsterdam Density Functional (ADF) package is used to calculate the geometry, frequencies, and properties. The optimized geometry, frontier orbital energy, and main atomic orbital percentage are obtained. The thermal behavior is studied under a non-isothermal condition by DSC and TG/DTG methods. The apparent activation energy (E a) and pre-exponential factor (A) of the exothermic decomposition reaction of (DNAZ-CO)2 are 164.10 kJmol?1 and 1013.38 s?1 respectively. The critical temperature of thermal explosion is 272.20°C. The values of ΔS , ΔH , and ΔG of this reaction are 6.44 Jmol?1·K?1, 163.76 kJmol?1 and 160.34 kJmol?1 respectively.  相似文献   

5.
The ionic complexes simultaneously containing negatively charged coordination structures of metal phthalocyanines and fullerene anions, viz., {MnIIPc(CH3CH2S?) x ·(I?)1?x }·(C60 ·?)· ·(PMDAE+)2·C6H4Cl2 (PMDAE is N,N,N′,N′,N′-pentamethyldiaminoethane, x = 0.87, 1) and {ZnIIPc(CH3CH2S?)y·(I?)1?y }2·(C60 ?)2·(PMDAE+)4·(C6H4Cl2) (y = 0.5, 2) were synthesized. The both compounds were obtained as single crystals, which made it possible to study their crystal structures. In complex 1, the fullerene radical anions form honeycomb-like layers in which each fullerene has three neighbors with center-to-center interfullerene distances of 10.13–10.29 Å. Rather long distances between the C60 ·? radical anions results in the retention of monomeric C60 ·? in this complex down to the temperature of 110(2) K. In complex 2, fullerenes form dimers (C60 ?)2 bonded by one C-C bond. The dimers are packed in corrugated honeycomb-like layers with interfullerene center-to-center distances of 9.90–10.11 Å. Manganese(II) and zinc(II) phthalocyanines coordinate iodide and ethanethiolate anions to the central metal atom to form unusual negatively charged coordination structures MIIPc(An?) (An? is anion) packed in dimers {MIIPc(An?)}2 with a short distance between the phthalocyanine planes (3.14 Å in 1 and 3.27 Å in 2). The pthalocyanine dimers also form layers with the PMDAE+ cations, and these layers alternate with the fullerene layers. The packing of spherical fullerenes with planar phthalocyanine molecules is attained by the insertion of fullerenes between the phenylene groups of phthalocyanines. The π-π-interactions of the porphyrin macrocycle with five- or six-membered fullerene rings are characteristic of the earlier studied ionic porphyrin and fullerene complexes. Such interactions are not observed for ionic complexes 1 and 2.  相似文献   

6.
The temperature dependences of the heat capacities of 5-vinyltetrazole and poly-5-vinyltetrazole were measured by adiabatic vacuum calorimetry over the temperature range 6-(350–370) K with errors of ~0.2%. The results were used to calculate the thermodynamic functions of the compounds, C p ° , H °(T) - H °(0), S °(T), and G °(T) - H °(0), over the temperature range from T → 0 to 350–370 K. The energy of combustion of 5-vinyltetrazole and poly-5-vinyltetrazole was measured in an isothermic-shell static bomb calorimeter. The standard enthalpies of combustion Δ c H ° and thermodynamic characteristics of formation Δf H °, Δf S °, and Δf G ° at 298.15 K and p = 0.1 MPa were calculated. The results were used to determine the thermodynamic characteristics of polymerization of 5-vinyltetrazole over the temperature range from T → 0 to 350 K.  相似文献   

7.
8.
It was shown that the monomeric rhodium sulfate complexes [Rh(H2O)4(SO4)]+, trans-[Rh(H2O)2(SO4)2]?, cis-[Rh(H2O)2(SO4)2]?, and [Rh(SO4)3]3? were not predominant forms in aqueous solutions. The 103Rh NMR chemical shifts of the complexes were assigned, and the conditions for their formation in solutions, concentration parameters, and acidity at which the fraction of the monomers was maximal were determined. The constants of formation of the complexes and ion pair (IP) were estimated: K IP = 8 ± 3.5, K 1 ≈ 8, K 2trans ≈ 1, K 2cis ≈ 1, and K 3 ≈ 2.  相似文献   

9.
Complex formation of copper(II) ions with L-serine and L-homoserine at 298.15 K and ionic strength I 0.5, 1.0, and 1.5 (KNO3) has been studied by means of potentiometry and calorimetry. Standard thermodynamic parameters (log K0, ΔrG0, ΔrH0, ΔrS0) of the studied coordination equilibriums have been calculated.  相似文献   

10.
Electron density distribution in n-alkyl radicals (from ethyl to n-octyl) was studied by the B3LYP/6-311++G(3df,3pd) DFT method. The theory of atoms in molecules was used to show that the inductive effect of a free valence extends to two neighboring CH2 groups. The electronegativities χ(C?H2) > χ(CH3) > χ(CH2) of groups and χ(C?) > χ(H) > χ(C) atoms were qualitatively determined. The group method for calculating the enthalpies of formation of n-alkyl radicals Δf H°(n-C n H2n+ 1, n > 5) was substantiated.  相似文献   

11.
Density functional theory was used to study model ethylene reactions with CpTiIIIEt+A? (A? = CH3B(C6F5) 3 ? , or B(C6F5) 4 ? ; A? can be absent) compounds. The polymerization of ethylene on an isolated CpTiEt+ cation is hindered because of equilibrium between the CpTi(C2H4)Et+ primary complex and the primary product of CpTiBu+ insertion. At the same time, the polymerization of ethylene on CpTiEt+A? ion pairs (A? = CH3B(C6F5) 3 ? or B(C6F5) 4 ? ) is thermodynamically allowed (ΔE from ?26.2 to ?25.6 kcal/mol and ΔG 298 from ?10.9 to ?10.4 kcal/mol) and is not related to overcoming substantial energy barriers (ΔE # = 8.2?12.3 kcal/mol and ΔG 298 ) = 7.8?13.3 kcal/mol). The degree of polymerization can be low because of the effective occurrence of polymer chain termination by hydrogen transfer from the polymer chain to the monomer.  相似文献   

12.
Stability constants and heat effects of the formation reactions of magnesium and calcium trimethylenediaminetetraacetates at 298.15 K and ionic strength of 0.1, 0.5, and 1.0 (mol/L KNO3) have been determined by means of potentiometry and calorimetry. Standard thermodynamic parameters (log K0, ΔrG0, ΔrH0, and ΔrS0) of the studied equilibriums have been determined.  相似文献   

13.
This study was designed to examine the interaction of histamine H2-receptor antagonist drug ranitidine (RTN) with human serum albumin by multi-spectroscopic methods. The experimental results showed the involvement of dynamic quenching mechanism which was further confirmed by lifetime spectral studies. The binding constants (K a) at three temperatures (288, 298, and 308 K) were 2.058 ± 0.020, 4.160 ± 0.010 and 6.801 ± 0.011 × 104 dm3 mol?1, respectively, and the number of binding sites (m) were 1.169, respectively; thermodynamic parameters ΔH 0 (44.152 ± 0.047 kJ mol?1), ΔG 0 (?26.214 ± 0.040 kJ mol?1), and ΔS 0 (236.130 ± 0.025 J K?1 mol?1) were calculated. The distance r between donor and acceptor was obtained (r = 3.40 nm) according to the Förster theory of non-radiative energy transfer. Synchronous fluorescence, CD, AFM and 3D fluorescence spectral results revealed the changes in secondary structure of the protein upon interaction with RTN. A molecular modeling study further confirmed the binding mode obtained by the experimental studies.  相似文献   

14.
The formation of mixed-ligand complexes in the M(II)–Ida–L systems (M = Cu, Ni, L = His, Orn, Lys), where Ida is the iminodiacetic acid residue, was studied by pH-metry, calorimetry, and spectrophotometry. The thermodynamic parameters (logK, ΔrG0, ΔrH, ΔrS) of formation of the complexes were determined at 298.15 K and the ionic strength I = 0.5 (KNO3). The most probable mode of coordination of the chelating agent and the amino acid in the mixed-ligand complexes was elucidated.  相似文献   

15.
Two complexes with similar compositions are synthesized: (18-crown-6)(nitrato-O,O′)potassium (I) and (18-crown-6)(nitrato-O,O′)potassium(0.91)silver(0.09) (II). Their isomorphic orthorhombic crystals (space group P212121, Z = 4) are studied by X-ray diffraction analysis. Structure I (a = 8.553 Å, b = 11.967 Å, c = 17.871 Å) and structure II (a = 8.540 Å, b = 11.956 Å, c = 17.867 Å) are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.044 (I) and 0.055 (II) for all 2385 (I) and 2379 (II) measured independent reflections. Complex molecules [K(NO3)(18-crown-6)] in structure I and [K0.91Ag0.09(NO3)(18-crown-6)] in compound II are of the host-guest type and rather similar in structure. Their 18-crown-6 and NO 3 ? ligands are disordered over two orientations. The K+ cation in complex I and the mixed cation (K0.91Ag0.09)+ in complex II reside in the cavity of the disordered 18-crown-6 ligand and is coordinated by its six O atoms and by two disordered O atoms of the NO 3 ? . ligand. The coordination polyhedron (CN = 8) of the K+ cation in complex I and that of (K0.91Ag0.09)+ cation in complex II is a distorted hexagonal pyramid with a base of six O atoms of the 18-crown-6 ligand and a split vertex at two O atoms of the NO 3 ? ligand.  相似文献   

16.
A complex [Zn(C8H7O3)2(H2O)2] (C8H8O3 is vanillin) has been synthesized and characterized by IR, elemental analysis, and X-ray diffraction single-crystal analysis. The crystals are monoclinic, space group C2/c, a = 22.236(8) Å, b = 10.594(2) Å, c = 7.8190(16) Å, α = 89.90(3)°, β = 106.87(4)°, γ = 89.99(3)°, V = 1762.6(8) Å3, Z = 4, F(000) = 832, S = 1.079, ρ c = 1.521g cm?3, R = 0.0221, R w = 0.0604, μ = 1.433 mm?1. The Zn2+ ion is six-coordinated with a distorted octahedron geometry. The complex forms a three-dimensional network through intermolecular hydrogen bonds. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal conditions by the TG and DTG methods. The kinetic equation can be expressed as dα/dt = Ae?E/RT 2(1 ? α)[1 ? ln(1 ? α)]1/2. The kinetic parameters (E, A), activation entropy ΔS , and activation free-energy ΔG were also gained.  相似文献   

17.
Two new complexes were synthesized, namely, 7: 2 (2.2.2-cryptand)potassium chloride and (2.2.2-cryptand)ammonium bromide(0.75)chloride(0.25) hydrates: [M(Crypt-222)]+ · Hal? · 3.5H2O, where M = K, Hal = Cl (I) and M = NH4, Hal = Br0.75Cl0.25 (II). The structures of two isomorphous crystals were studied by X-ray diffraction analysis. Trigonal (space group P \(\bar 3\), Z = 2) structures I (a = 11.763 Å, c = 11.262 Å) and II (a = 11.945 Å, c = 11.337 Å) were solved by direct methods and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.057 (I) and 0.065 (II) for all 2626 (I) and 1654 (II) independent measured reflections (CAD-4 automated diffractometer, λMoK α). In structures I and II, the host-guest [M(Crypt-222)]+ complex cation lies on the threefold crystallographic axis and has the approximate D 3 symmetry. In complex I, the coordination polyhedron of the K+ cation (CN = 8) is a bicapped trigonal prism somewhat distorted toward an antiprism. Complexes I and II contain H-bonded disordered cubes of the water molecules and the Cl? or Br? anions.  相似文献   

18.
The mean atomic Gibbs energies of formation of (Δ f ? at 0 ) of s-, p-, and d-element diphosphates have been calculated using ion increments of the Gibbs energy (Δ f G 0). The diphosphate hydrolysis kinetics is considered, and a correlation between the Δ f ? at 0 values and the hydrolysis rate constants is presented.  相似文献   

19.
The temperature dependences of birefringence Δn, anisotropy of permittivity ?a, and elastic constants K 11 and K 33 in the nematic phase of a tetrapalladium organyl-pentadecane system with a pentadecane content of 55 wt % have been investigated experimentally. It has been shown that, as temperature is elevated, ?a, K 11, and K 33 values decrease and Δn remains unchanged. Elastic constants K 11 and K 33 have been established to vary from 3.4 × 10?7 to 5.6 × 10?6 dyn and from 1.3 × 10?6 to 27.4 × 10?5 dyn, respectively. The value of ?a has been revealed to vary over the range 0.2–0.5. It has been found that, at temperatures above the N2 → Cr phase transition by 6°C, an imposed electric field induces the growth of tetrapalladium organyl crystals.  相似文献   

20.
The thermodynamic characteristics of complexation between ethylenediamine-N,N'-disuccinic acid (H4Y; EDDA) and Ho3+ ion were determined calorimetrically and potentiometrically at 298.15 K and ionic strengths of 0.1, 0.5, 1.0, and 1.5 (KNO3). The logK, ΔrG, ΔrH, and ΔrS values for the formation of HoY and HOHY complexes were calculated at the studied and zero ionic strength values. The changes in thermodynamic parameters of the reactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号