首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Charge stripping (CS) of the molecular ion of toluene, C(7)H(8) (+)-->C(7)H(8) (2+)+e, is often used as a reference for the determination of second ionization energies in energy-resolved CS experiments. For calibration of the kinetic energy scale, a value of IE(C(7)H(8) (+))=(15.7+/-0.2) eV derived from the appearance energy of the toluene dication upon electron ionization has been accepted generally. Triggered by some recent discrepancies between CS measurements on the one hand and different experimental methods as well as theoretical predictions on the other, we have reinvestigated the photon-induced double ionization of toluene using synchrotron radiation. These photoionization measurements yield phenomenological appearance energies of AE(C(7)H(8) (+))=(8.81+/-0.03) eV for the monocation and AE(C(7)H(8) (2+))=(23.81+/-0.06) eV for the dication. The former is in good agreement with a much more precise spectroscopic value, IE(C(7)H(8))=(8.8276+/-0.0006) eV. Explicit consideration of the Franck-Condon envelopes associated with photoionization to the dication in conjunction with the application of the Wannier law leads to an adiabatic ionization energy IE(a)(C(7)H(8) (+))=(14.8+/-0.1) eV, which is as much as 0.9 eV lower than the previous value derived from electron ionization. Because in many previous CS measurements the transition C(7)H(8) (+)-->C(7)H(8) (2+)+e was used as a reference, the energetics of several gaseous dications might need some readjustment.  相似文献   

2.
A time-of-flight mass spectrometer with a position sensitive ion detector was used to study the dissociative double ionization of benzene by UV synchrotron radiation. The threshold energy for the main dissociative processes, leading to CH(3)(+) + C(5)H(3)(+), C(2)H(3)(+) + C(4)H(3)(+) and C(2)H(2)(+) + C(4)H(4)(+) ion pairs were characterized by exploiting a photoelectron-photoion-photoion-coincidence technique, giving 27.8 ± 0.1, 29.5 ± 0.1, and 30.2 ± 0.1 eV, respectively. The first reaction also proceeds via the formation of a metastable C(6)H(6)(2+) dication. The translational kinetic energy of the ionic products was evaluated by measuring the position of ions arriving to the detector. Theoretical calculations of the energy and structure of dissociation product ions were performed to provide further information on the dynamics of the charge separation reactions following the photoionization event.  相似文献   

3.
The photoionization of 1-alkenylperoxy radicals, which are peroxy radicals where the OO moiety is bonded to an sp2-hybridized carbon, is studied by experimental and computational methods and compared to the similar alkylperoxy systems. Quantum chemical calculations are presented for the ionization energy and cation stability of several alkenylperoxy radicals. Experimental measurements of 1-cyclopentenylperoxy (1-c-C5H7OO) and propargylperoxy (CH2=C=CHOO) photoionization are presented as examples. These radicals are produced by reaction of an excess of O2 with pulsed-photolytically produced alkenyl radicals. The kinetic behavior of the products confirms the formation of the alkenylperoxy radicals. Electronic structure calculations are employed to give structural parameters and energetics that are used in a Franck-Condon (FC) spectral simulation of the photoionization efficiency (PIE) curves. The calculations also serve to identify the isomeric species probed by the experiment. Adiabatic ionization energies (AIEs) of 1-c-C5H7OO (8.70 +/- 0.05 eV) and CH2=C=CHOO (9.32 +/- 0.05 eV) are derived from fits to the experimental PIE curves. From the fitted FC simulation superimposed on the experimental PIE curves, the splitting between the ground state singlet and excited triplet cation electronic states is also derived for 1-c-C5H7OO (0.76 +/- 0.05 eV) and CH2=C=CHOO (0.80 +/- 0.15 eV). The combination of the AIE(CH2=C=CHOO) and the propargyl heat of formation provides Delta f H(0)(o) (CH2=C=CHOO+) of (1162 +/- 8) kJ mol-1. From Delta f H(0)(o) (CH2=C=CHOO+) and Delta f H (0)(o) (C3H3+) it is also possible to extract the bond energy D(0)(o)(C3H3+-OO) of 19 kJ mol-1 (0.20 eV). Finally, from consideration of the relevant molecular orbitals, the ionization behavior of alkyl- and alkenylperoxy radicals can be generalized with a simple rule: Alkylperoxy radicals dissociatively ionize, with the exception of methylperoxy, whereas alkenylperoxy radicals have stable singlet ground electronic state cations.  相似文献   

4.
The bimolecular reactivity of the CO(2)(2+) dication with neutral CO(2) is investigated using triple quadrupole and ion-ion coincidence mass spectrometry. Crucial for product analysis is the use of appropriate isotope labelling in the quadrupole experiments in order to distinguish the different reactive pathways. The main reaction corresponds to single-electron transfer from the neutral reagent to the dication, i.e. CO(2)(2+) + CO(2) --> 2CO(2)(+); this process is exothermic by almost 10 eV, if ground state monocations are formed. Interestingly, the results indicate that the CO(2)(+) ion formed when the dication accepts an electron dissociates far more readily than the CO(2)(+) ion formed from the neutral CO(2) molecule. This differentiation of the two CO(2)(+) products is rationalized by showing that the population of the key dissociative states of the CO(2)(+) monocation will be favoured from the CO(2)(2+) dication rather than from neutral CO(2). In addition, two bond-forming reactions are observed as minor channels, one of which leads to CO(+) and O(2)(+) as ionic products and the other affords a long-lived C(2)O(3)(2+) dication.  相似文献   

5.
The structure of the C7H8(2+) dication generated upon electron ionization of toluene is investigated by experimental and theoretical means. For the long-lived C7H8(2+) dication, the experimental findings obtained with a novel SIFT/GIB instrument suggest complete loss of structural integrity corresponding to the toluene structure. Instead, the manifold of C7H8(2+) dications most likely to be formed is assigned to a mixture of the cycloheptatriene dication and ring-protonated benzylium ions.  相似文献   

6.
An experimental and theoretical study of the photoionization energies (IE's) of Ba(H(2)O)(n) clusters containing up to n = 4 water molecules has been performed. The clusters were generated by a pick-up source combining laser vaporization with pulsed supersonic expansion, and then photoionized by radiation of 272.5-340 nm. The experimentally determined IE(e)'s for n = 1 to 4 are 4.56 ± 0.05, 4.26 ± 0.05, 3.90 ± 0.05 and 3.71 ± 0.05 eV. This cluster size dependence of IE is reproduced within ±0.06 eV employing the mPW1PW91 density-functional and CCSD(T, Full) quantum-chemical methods combined with the 6-311++G(d,p) basis set for the H and O atoms and three different relativistic effective core potentials for Ba atoms. The calculations indicate that the lowest energy hydration structures represent the most relevant contributions to both the vertical and adiabatic ionization energies. Experimental and theoretical evidence correlates with the progressive surface-delocalization of the electron from the hydration cavity around the Ba atom and suggests that the intra-cluster electron transfer is possible even for small aggregates.  相似文献   

7.
Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C(3)H(3)) radical, σ(propargyl) (ion)(E), relative to the known absolute cross-section of the methyl (CH(3)) radical. We generated a stoichiometric 1:1 ratio of C(3)H(3):CH(3) from 193 nm photolysis of two different C(4)H(6) isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of σ(propargyl)(ion)(10.213 eV)=(26.1±4.2) Mb and σ(propargyl)(ion)(10.413 eV)=(23.4±3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of σ(propargyl)(ion)(10.213 eV)=(23.6±3.6) Mb and σ(propargyl)(ion)(10.413 eV)=(25.1±3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.  相似文献   

8.
Ethanol clusters are generated in a continuous He seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method clusters of the type Na(C(2)H(5)OH)(n) are formed and characterized by determining size selectively their ionization potentials (IPs) for n = 2-40 in photoionization experiments. A continuous decrease to 3.1 eV is found from n = 2 to 6 and a constant value of 3.07 ± 0.06 eV for n = 10-40. This IP evolution is similar to the sodium-water and the sodium-methanol system. Quantum chemical calculations (B3LYP and MP2) of the IPs indicate adiabatic contributions to the photoionization process for the cluster sizes n = 4 and 5, which is similar to the sodium-methanol case. The results of the extrapolated IPs and the vertical binding energies (VEBs) of cluster anions are compared with the recently reported VEBs of solvated electrons in liquid water, methanol, and ethanol solutions in the range of 3.1-3.4 eV. The new results imply that the extrapolated VBEs of solvated electrons in anionic clusters match the VBE in liquid water, while they are about 0.5 eV too low for methanol. The influence of the presence of counterions on these findings is discussed.  相似文献   

9.
The bimolecular reactions of several hydrocarbon dications C(m)H(n)(2+) (m = 6-10, n = 4-9) with neutral benzene are investigated by tandem mass spectrometry using a multipole instrument. Not surprisingly, the major reaction of C(m)H(n)(2+) with benzene corresponds to electron transfer from the neutral arene to the dication resulting in the pair of monocationic products C(m)H(n)(+) + C(6)H(6)(+). In addition, also dissociative electron transfer takes place, whereas proton transfer from the C(m)H(n)(2+) dication to neutral benzene is almost negligible. Interestingly, the excess energy liberated upon electron transfer from the neutral arene to the C(m)H(n)(2+) dication is not equally partitioned in the monocationic products in that the cations arising from the dicationic precursor have a higher internal energy content than the monocations formed from the neutral reaction partner. In addition to the reactions leading to monocationic product ions, bond-forming reactions with maintenance of the two-fold charge are observed, which lead to a condensation of the C(m)H(n)(2+) dications with neutral benzene under formation of intermediate C(m+6)H(n+6)(2+) species and then undergo subsequent losses of molecular hydrogen or neutral acetylene. This reaction complements a recently proposed dicationic route for the formation of polycyclic aromatic hydrocarbons under extreme conditions such as they exist in interstellar environments.  相似文献   

10.
Ab initio MP2/6-311G and QCISD(T)/6-311G levels as well as Gaussian-2 theory were used to perform a comparative study of the structures and stabilities of the ethane dication C(2)H(6)(2+) and its silicon analogues Si(2)H(6)(2+) and CSiH(6)(2+). Similar to previous HF/6-31G results, our present calculations also indicate that the two-electron three-center (2e-3c) bonded carbonium-carbenium structure 1 is more stable than the doubly hydrogen bridged diborane-type structure 2 by about 12 kcal/mol. For the silicon analogue Si(2)H(6)(2+) the calculations, however, indicate that the 2e-3c bonded siliconium-silicenium structure 8 is about 9 kcal/mol less stable than doubly hydrogen bridged structure 9. Similar results were also computed for carbon-silicon mixed CSiH(6)(2+) dication structures. These studies are in agreement with the more electropositive character of silicon compared to carbon. Possible dissociation paths of the minimum structures were also calculated.  相似文献   

11.
Gas-phase reactions of Ta(2+) and TaO(2+) with oxidants, including thermodynamically facile O-atom donor N(2)O and ineffective donor CO, as well as intermediate donors C(2)H(4)O (ethylene oxide), H(2)O, O(2), CO(2), NO, and CH(2)O, were studied by Fourier transform ion cyclotron resonance mass spectrometry. All oxidants reacted with Ta(2+) by electron transfer yielding Ta(+), in accord with the high second ionization energy of Ta (ca. 16 eV). TaO(2+) was also produced with N(2)O, H(2)O, O(2), and CO(2), oxidants with ionization energies above 12 eV; CO reacted only by electron transfer. The following charge separation products were also observed: TaN(+) and TaO(+) with N(2)O; and TaO(+) with O(2), CO(2), and CH(2)O. TaOH(2+), formed with H(2)O, reacted with a second H(2)O by proton transfer. TaO(2+) abstracted an electron from N(2)O, H(2)O, O(2), CO(2), and CO. Oxidation of TaO(2+) by N(2)O was also observed to produce TaO(2)(2+); on the basis of density functional theory (DFT) results, this species is a dioxide, {O-Ta-O}(2+). TaO(2)(2+) reacted by electron transfer with N(2)O, CO(2), and CO to give TaO(2)(+). Additionally, it was found that TaO(2)(2+) oxidizes CO to CO(2) and that it acts as a catalyst in the oxidation of CO by N(2)O. TaO(2)(2+) also activates H(2) to form TaO(2)H(2+). On the basis of the rates of electron transfer from N(2)O, CO(2), and CO to Ta(2+), TaO(2+), and TaO(2)(2+), the following estimates were made for the second ionization energies of Ta, TaO, and TaO(2): IE[Ta(+)] = 15.8 ± 0.3 eV, IE[TaO(+)] = 16.0 ± 0.5 eV, and IE[TaO(2)(+)] = 16.9 ± 0.4 eV. These IEs, together with recently reported bond dissociation energies, D[Ta(+)-O] and D[OTa(+)-O], result in the following bond energies: D[Ta(2+)-O] = 657 ± 58 kJ mol(-1) and D[OTa(2+)-O] = 500 ± 63 kJ mol(-1), the first of which is in good agreement with the value obtained by DFT.  相似文献   

12.
The double photoionization spectrum of SO2 has been measured using the TOF-PEPECO technique and contains one resolved band. Detailed electronic structure calculations and experimental comparisons allow the resolved band to be identified as the A 1A2 state of the SO2(2+) dication, with its adiabatic ionization energy at 35.284+/-0.02 eV. According to the most accurate calculations, the ground state level of SO2(2+) must be located near 33.48 eV, well below the range accessed by vertical transitions from neutral SO2. Transient SO2 (2+) molecules detected by mass spectrometry may be identified either as the sharp levels of the A 1A2 state or as ground state levels populated by nonvertical ionization pathways.  相似文献   

13.
The two-body dissociation reactions of the dication, C(2)H(2)(2+), produced by 39.0 eV double photoionization of acetylene molecules, have been studied by coupling photoelectron-photoion-photoion coincidence and ion imaging techniques. The results provide the kinetic energy and angular distributions of product ions. The analysis of the results indicates that the dissociation leading to C(2)H(+)+H(+) products occurs through a metastable dication with a lifetime of 108±22 ns, and a kinetic energy release (KER) distribution exhibiting a maximum at ~4.3 eV with a full width at half maximum (FWHM) of about 60%. The reaction leading to CH(2)(+)+C(+) occurs in a time shorter than the typical rotational period of the acetylene molecules (of the order of 10(-12) s). The KER distribution of product ions for this reaction, exhibits a maximum at ~4.5 eV with a FWHM of about 28%. The symmetric dissociation, leading to CH(+)+CH(+), exhibits a KER distribution with a maximum at ~5.2 eV with a FWHM of 44%. For the first two reactions the angular distributions of ion products also indicate that the double photoionization of acetylene occurs when the neutral molecule is mainly oriented perpendicularly to the light polarization vector.  相似文献   

14.
The absolute photoionization cross section of C(2)H(5) has been measured at 10.54 eV using vacuum ultraviolet (VUV) laser photoionization. The C(2)H(5) radical was produced in situ using the rapid C(2)H(6) + F → C(2)H(5) + HF reaction. Its absolute photoionization cross section has been determined in two different ways: first using the C(2)H(5) + NO(2) → C(2)H(5)O + NO reaction in a fast flow reactor, and the known absolute photoionization cross section of NO. In a second experiment, it has been measured relative to the known absolute photoionization cross section of CH(3) as a reference by using the CH(4) + F → CH(3) + HF and C(2)H(6) + F → C(2)H(5) + HF reactions successively. Both methods gave similar results, the second one being more precise and yielding the value: σ(C(2)H(5))(ion) = (5.6 ± 1.4) Mb at 10.54 eV. This value is used to calibrate on an absolute scale the photoionization curve of C(2)H(5) produced in a pyrolytic source from the C(2)H(5)NO(2) precursor, and ionized by the VUV beam of the DESIRS beamline at SOLEIL synchrotron facility. In this latter experiment, a recently developed ion imaging technique is used to discriminate the direct photoionization process from dissociative ionization contributions to the C(2)H(5)(+) signal. The imaging technique applied on the photoelectron signal also allows a slow photoelectron spectrum with a 40 meV resolution to be extracted, indicating that photoionization around the adiabatic ionization threshold involves a complex vibrational overlap between the neutral and cationic ground states, as was previously observed in the literature. Comparison with earlier photoionization studies, in particular with the photoionization yield recorded by Ruscic et al. is also discussed.  相似文献   

15.
The photoionization and photodissociation of L-valine are studied by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry at the photon energy of 13 eV. The ionization energy of L-valine and the appearance energies of major fragments are measured by the photoionization efficiency spectrum in the photon energy range of 8-11 eV. Possible formation pathways of the major fragments, NH(2)CHC(OH)(2)(+) (m/z=75), NH(2)(CH(3))(2)(CH)(2)(+) (m/z=72) and NH(2)CHCO(+) (m/z=57), are discussed in detail with the theoretical calculations at the B3LYP/6-31++G (d, p) level. Hydrogen migration is considered as the key way for the formation of NH(2)CHC(OH)(2)(+) (m/z=75) and NH(2)CHCO(+) (m/z=57). Furthermore, other fragments, NH(2)CHCOOH(+) (m/z=74), (CH(3))(2)(CH)(2)(+) (m/z=56), C(4)H(7)(+) (m/z=55), NH(2)CHOH(+) (m/z=46), NH(2)CH(2)(+) (m/z=30) and m/z=18, species are also briefly described.  相似文献   

16.
利用真空紫外同步辐射和反射式飞行时间质谱研究了乙苯分子的光电离, 通过测量母体分子的光电离质谱(PIMS)以及母体离子和主要碎片离子的光电离效率曲线(PIEs), 确定了乙苯分子的电离能IE(C8H+10)=(8.66±0.02) eV, 主要碎片离子C7H+7和C6H+6的出现能分别为(10.81±0.02)和(10.99±0.02) eV; 利用经验公式计算出产生碎片离子C7H+7和C6H+6需要的解离能(Ed)分别为(2.15±0.04)和(2.33±0.04) eV. 结合相关的热化学参数, 推算出C8H+10, C7H+7和C6H+6的标准生成焓分别为865.5, 927.2和1037.9 kJ/mol. 为进一步研究乙苯的大气光氧化反应机理提供了参考.  相似文献   

17.
The vacuum ultraviolet photoionization of ferrocene has been studied by using synchrotron radiation and a time-of-flight(TOF)mass spectrometer. The photoionization TOF mass spectrum and photoionization efficiency (PIE)curves of some ions were measured. VUV absorption by ferrocene results in Fe(C5H5)2+,FeC5H5+,Fe+,FeC3H3+,FeC3H+,C10H9+,C10H8+ and C5H6+. The ionization potential(IP)of ferrocene is determined to be (6.78±0.05)eV. The appearance potential(AP)of the fragment FeC5H5+ was measured to be(13.40±0.10)eV. In addition,theoretical calculations with the density functional method B3LYP and the basis set 6-31G(d)have been carried out. The calculation result shows that the ionization potential of ferrocene is 6.16 eV,which is smaller than that from the experiment because the ionization potential from calculation is adiabatic value and the experimental result is vertical value. Due to the limited available computational cost,the case of the electron spin S=1/2 for Fe is only considered,which may lead to some low precision in calculation. So the calculation result is just as references. The appearance potential of FeC5H5+ is 12.17 eV,which is also smaller than the experimental value. According to the experimental and calculation results,the bond energies of D0(FeC5H5+-C5H5),D0(Fe+-C5H5),D0(C5H5-Fe+-C5H5)have been evaluated and the possible channels of dissociation photoionization have been analyzed. Sequential elimination of C5H5 ligands is a major dissociation channel,but concerted elimination of two C5H5 ligands also takes place.  相似文献   

18.
C(7)H(12)(2+) (1), the prototype hexacoordinate carbonium dication was found to be a viable minimum at the MP2/6-31G** and MP2/cc-pVTZ levels. Structure 1 is a propeller shaped molecule resembling a complex involving a C(2+) with three ethylene molecules resulting in the formation of three two-electron, three-center (2e-3c) bonds. Isomeric structure 2 was found to be 21.8 kcal/mol more stable than structure 1. However, conversion of 1 into 2 through transition structure 3 has a barrier of 5.7 kcal/mol. Related structures 4, 5, and 8 were also located as minima for C(7)H(12)(2+). The isoelectronic boron analogue BC(6)H(12)(+) (10) was also computed to be a minimum at the same level of calculations.  相似文献   

19.
Ionization and fragmentation of formic acid dimers (HCOOH)(2) and (DCOOD)(2) by irradiation of femtosecond laser pulses (100 fs, 800 nm, ~1 × 10(14) W/cm(2)) were investigated by time-of-flight (TOF) mass spectrometry. In the TOF spectra, we observed fragment ions (HCOOH)H(+), (HCOOH)HCOO(+), and H(3)O(+), which were produced via the dissociative ionization of (HCOOH)(2). In addition, we found that the TOF signals of COO(+), HCOO(+), and HCOOH(+) have small but clear side peaks, indicating fragmentation with large kinetic energy release caused by Coulomb explosion. On the basis of the momentum matching among pairs of the side peaks, a Coulomb explosion pathway of the dimer dication, (HCOOH)(2)(2+) → HCOOH(+) + HCOOH(+), was identified with the total kinetic energy release of 3.6 eV. Quantum chemical calculations for energies of (HCOOH)(2)(2+) were also performed, and the kinetic energy release of the metastable dication was estimated to be 3.40 eV, showing good agreement with the observation. COO(+) and HCOO(+) signals with kinetic energies of 1.4 eV were tentatively assigned to be fragment ions through Coulomb explosion occurring after the elimination of a hydrogen atom or molecule from (HCOOH)(2)(2+). The present observation demonstrated that the formic acid dimer could be doubly ionized prior to hydrogen bond breaking by intense femtosecond laser fields.  相似文献   

20.
Internal energy selected bromofluoromethane cations were prepared and their internal energy dependent fragmentation pathways were recorded by imaging photoelectron photoion coincidence spectroscopy (iPEPICO). The first dissociation reaction is bromine atom loss, which is followed by fluorine atom loss in CF(3)Br and CF(2)Br(2) at higher energies. Accurate 0 K appearance energies have been obtained for these processes, which are complemented by ab initio isodesmic reaction energy calculations. A thermochemical network is set up to obtain updated heats of formation of the samples and their dissociative photoionization products. Several computational methods have been benchmarked against the well-known interhalogen heats of formation. As a corollary, we stumbled upon an assignment issue for the ClF heat of formation leading to a 5.7 kJ mol(-1) error, resolved some time ago, but still lacking closure because of outdated compilations. Our CF(3)(+) appearance energy from CF(3)Br confirms the measurements of Asher and Ruscic (J. Chem. Phys. 1997, 106, 210) and Garcia et al. (J. Phys. Chem. A 2001, 105, 8296) as opposed to the most recent result of Clay et al. (J. Phys. Chem. A 2005, 109, 1541). The ionization energy of CF(3) is determined to be 9.02-9.08 eV on the basis of a previous CF(3)-Br neutral bond energy and the CF(3) heat of formation, respectively. We also show that the breakdown diagram of CFBr(3)(+), a weakly bound parent ion, can be used to obtain the accurate adiabatic ionization energy of the neutral of 10.625 ± 0.010 eV. The updated 298 K enthalpies of formation Δ(f)H(o)(g) for CF(3)Br, CF(2)Br(2), CFBr(3), and CBr(4) are reported to be -647.0 ± 3.5, -361.0 ± 7.4, -111.6 ± 7.7, and 113.7 ± 4 kJ mol(-1), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号