首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The equilibrium of a magnetized Helium plasma is disturbed by a pulsed Trivelpiece-Gouldwave. The electrons obtain the energy by linear collisionless wave absorption. The relaxation phenomena of density and energy are explained in terms of two relaxation times τE, τ1 and a quantity giving the additional ionization. These quantities are derived from a small signal fluid model based upon energy and particle balance equations. In the experiment they are taken from the transient curves of Langmuir-probe current, optical line radiation and the noise power at the electron cyclotron frequency. The experimental conditions are: Helium-gas, p = 1 …? 5 Pa, Te = 4 eV, n = 1 …? 5 · 1010 cm?3, B = 6,5 · 10?2 T, 27 MHz rf plasma source, low frequency fluctuation level < 1%, classical losses. The energy relaxation time …?E = 10 …? 15 μs is given by inelastic collision losses. The ionization time constant τ1 is related to the instantaneous ionization frequency during the transient state. It shows a high value at the very beginning of the pulse which must be explained by a tail formation in the distribution function and enhanced radial losses becoming Bohm-like in the transition phase.  相似文献   

2.
R K Garg  Vasant Dandawate 《Pramana》1995,44(5):471-479
Collision induced non-radiative transitions in neon plasma have been studied using high intra-cavity radiation field of a 633 nm He-Ne laser. The transitions, induced from 3s 2 energy level to 4s1 and 5s1 groups of energy levels, have been detected as changes in intensities of the spectral lines originating from these energy levels. From these intensity measurements, the quantities governing the transitions i.e. (i)S 3 e /S 3RT , the ratio of the probabilities of electronic deexcitation to the total radiative deexcitation of energy level 3 (ii) 〈r 23 e v e〉, rate of excitation transfer per particle and (iii)S 23 e , the total probability for excitation transfer from level 2 to level 3 at a certain value of electron density have been calculated.  相似文献   

3.
We investigate theoretically the formation of a plasma in a plane layer of polymer foam (density ρ = 0.002 g/cm3 and thickness 800 μm) under the action of an external source of soft X-ray radiation under the conditions of PHELIX experiments. The incident flux is assumed to have a Planck’s distribution over the spectrum with T rad = 20–40 eV. In numerical calculations, the flux of incident X-ray radiation and the spectral constants of the target substance are varied. The action of an external X-ray radiation source on a low-density foam substance with a density of 2 mg/cm3 causes a plasma to be formed with relatively homogeneous profiles of density and temperature T = 15–35 eV. Absorption of externalradiation energy is distributed in the volume. The plasma temperature increases with increase in the external energy, and the energy passed through the plasma also increases. The results prove to be sensitive to the values of optical constants used in numeral simulation. The spectral flux of external radiation passed through the plasma is chosen as a criterion of correctness of the optical constants used in the calculations. In future experiments using the PHELIX facility, we plan to investigate the slowing-down of an ion beam in a plasma formed as a result of indirect heating of low-density polymer triacetate cellulose (TAC) foam with densities ρ = 0.001–0.01 g/cm3 under the action of a pulse of X-ray radiation, into which the laser radiation is preliminarily transformed.  相似文献   

4.
The ability of a CO2 laser to oscillate in the range of 16 (14) μm at room temperature was investigated experimentally and theoretically. The output energy per pulse was ~60 mJ at peak power of ~50 kW. It was necessary to minimize not only harmful losses but also useful ones in both channels 0001–0200 and 0200–0110 and to increase the input energy, i.e., the density of free electrons in the discharge, in order to increase the peak power and energy of 16-μm radiation. The highest values of peak power and energy of radiation were reached at different pressures of the active mixture. The rotational bottleneck effect limiting the peak power and energy of oscillation was important at rather low pressures of the active medium. Oscillation at the R12 line is more preferable than that at the P12 line for use as 9.6-μm dumping radiation.  相似文献   

5.
The problem of electron/pion identification in the CBM experiment based on the measurements of energy losses and transition radiation in the TRD detector is discussed. Earlier we analyzed a possibility to solve such a problem using an artificial neural network (ANN) [1]. Here we consider an approach based on a nonparametric ω n k goodness-of-fit criterion, and comparison with the ANN method is also performed. We show that both methods provide a comparable level of pion suppression and electron identification, the ω n k test is more simple for practical applications, the ANN method provides the needed level of pions suppression only if “clever” variables are used. We demonstrate that application of the ω n k -criterion to the J/Ψ reconstruction provides a high level of pion background suppression and significantly improves a signal-to-background ratio. The text was submitted by the authors in English.  相似文献   

6.
Generation of third harmonic of CO2 laser radiation has been obtained in a type-II, ϑ=57° cut 9 mm thick AgGaSe2 crystal for the first time by sum-frequency-mixing of the fundamental with its second harmonic, the latter being obtained using another type-I, ϑ=55° cut 11 mm thick AgGaSe2 crystal. The energy conversion efficiencies obtained for second harmonic and third harmonic generations are 6.3% and 2.4% respectively with the input fundamental pump power density of 5.9 MW/cm2 only. The wavelength of the fundamental CO2 laser radiation used for the generation of harmonics is 10.6 μm, P(20) line. A compact TEA CO2 laser source has been built in the laboratory.  相似文献   

7.
Polycrystalline europium huntite EuAl3(BO3)4 has been prepared by solid-phase synthesis. The spectral and kinetic characteristics of its luminescence under the excitation by a xenon lamp, single laser pulse, and electron beam have been studied. It has been established that the laser excitation of the polycrystalline samples in the 7 F 05 L 6 transition of Eu3+ ions with the power density P ≥ 5 × 107 W/cm2 leads to the structure rearrangement of the optical centers, which is accompanied by an increase in the probability of the radiation transitions of the activator. The stimulated radiation of the main type of Eu3+ centers in the 5 D 07 F 1, 7 F 2, and 7 F 4 transitions has been obtained under the excitation by the electron beam with an energy of 200 keV and a duration of 2 ns.  相似文献   

8.
It is suggested that the effect of multiple contactless rotation of electrons in an electrified ring, which has been recently discovered by our group, be used for energy transfer over long distances. In experiments with the ring, electrons travel very long distances, ≥107 km. Electron losses due to radiation and losses in a residual gas are analyzed. It is shown that these losses are much lower than 10?4 % over a distance of ≥104 km. Analysis is performed with regard to the complicated profile of the track. The electrical power that can be transmitted through such a channel is estimated. It exceeds 1013 W at a channel diameter of several millimeters. If channels have the form of a solenoid or toroid, high magnetic fields arise in them, which may find different applications including magnetic plasma confinement.  相似文献   

9.
Intense blue upconversion emission at 480 nm has been obtained at room temperature in Tm3+-Nd3+ co-doped Ta2O5 channel waveguides fabricated on a Si substrate, when the sample is excited with an infrared laser at 793 nm. The upconversion mechanism is based on the radiative relaxation of the Nd3+ ions (4F3/2 → 4I11/2) at about 1064 nm followed by the absorption of the emitted photons by Tm3+ ions in the 3H4 excited state. A coefficient of energy transfer rate as high as 3 × 10−16 cm3/s has been deduced using a rate equation analysis, which is the highest reported for Tm-Nd co-doped systems. The confinement of the 1064 nm emitted radiation in the waveguide structure is the main reason of the high energy transfer probability between Nd3+ and Tm3+ ions.  相似文献   

10.
Changes in the surface properties of vanadium and its alloys irradiated by Ar+ ions with the energy 20 keV, to a dose of 1022 m−2 at T irr ≈ 700K have been studied. The radiation effect consists of material surface hardening, increasing the lattice parameters of the irradiated samples, and radiation erosion of the surface layers in the form of flaking. Features of radiation damage to the material’s surface irradiated by gas ions with high sputtering coefficients are discussed.  相似文献   

11.
The results of the experiments on the destruction of micron-diameter conductors by an electromagnetic pulse, which is generated in an inhomogeneous coaxial line by a high-voltage power source and has a subnanosecond front, are reported. The role of electrodynamic processes in the surface layer of microconductors and in environment in the formation of the spatial structure of the plasma channel and in the transformation of the energy of the source to the energy of radiation has been revealed. The spectral characteristics of the radiation of the plasma channel have been analyzed. It has been shown that the radiation spectrum at the time of the formation of the plasma corona is continuous. The most intense spectral lines of copper (510.554, 515.324, 521.82 nm) appear at ∼3 ns after the formation of the plasma corona. The temperature has been estimated from the ratio of the intensities of the spectral lines as T e ∼ 0.7 eV.  相似文献   

12.
Photo-pumped lasing properties have been investigated in a CdSe/ZnSe/ZnSSE single quantum wells (SQWs) with the well-layer thickness (LW) of 1, 2 and 3 monolayer (ML). At 20 K, the laser threshold for the SQW withLW = 1 ML was the lowest in spite of the smallest active layer thickness. The carrier (exciton) sheet density at the threshold (n)thwas estimated to be as low as 7 × 1010cm−2, which is well below Mott's screening density. Time-resolved photoluminescence has revealed that the localized biexciton band, whose peak energy agrees with the lasing peak, appeared on the low-energy side of the main PL peak at this level of carrier concentrations. Theoretical calculation has also shown that the localized biexciton recombination has to be taken into account for the lasing process. On the contrary, thenthvalues of the SQWs with 2 and 3 ML are 1 order of magnitude larger than that of the SQW with 1 ML. This may be due to the smaller oscillator strength of both localized excitons and localized biexcitons because of the larger inhomogeneous broadening, resulting in an increased carrier density for achieving optical gain sufficient to overcome the reflection losses.  相似文献   

13.
The dynamics of accumulation of electrically active radiation defects under ion doping of epitaxial Cd x Hg 1−x Te films is studied for various distributions of film composition in the implantation region. The epitaxial films were irradiated by boron ions at room temperature in the continuous regime, with the dose ranging within 1011−3·1015 cm−2, energy — 20–150 keV, and ion current density — j = 0.001–0.2 μA·cm−2. It is found that the natural logarithm of the introduction rate of electrically active radiation defects linearly depends on the epitaxial-film composition in the range of mean projected path of implanted ions. An analysis of the experimental data shows that the dynamics of accumulation of electrically active radiation defects is determined by the epitaxial-film composition in the implantation region. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 25–28, September, 2006.  相似文献   

14.
Resonance absorption, the reabsorption of laser light by the laser transition of the dopant material itself, is found to be the limiting factor for fibre lasers when extremely long fibres are used. We report on measurements of the temperature dependence of the losses in a 8.5 m long commercial Nd3+ doped fibre (York, ND 95020/E). To determine the reabsorption losses, the threshold power has been measured as a function of temperature between 243 K and 413 K. The results are compared with theory assuming a 4l level energy of 2110 cm-1 and an absorption cross-section of δ = 1.15 x 10-20cm2. The comparison shows that reabsorption from the thermally populated 4l level is the dominant contribution to the measured losses.  相似文献   

15.
The high current electron beam losses have been studied experimentally with 0.7 J, 40 fs, 6 1019 Wcm-2 laser pulses interacting with Al foils of thicknesses 10-200 μm. The fast electron beam characteristics and the foil temperature were measured by recording the intensity of the electromagnetic emission from the foils rear side at two different wavelengths in the optical domain, ≈407 nm (the second harmonic of the laser light) and ≈500 nm. The experimentally observed fast electron distribution contains two components: one relativistic tail made of very energetic (T h tail ≈ 10 MeV) and highly collimated (7° ± 3°) electrons, carrying a small amount of energy (less than 1% of the laser energy), and another, the bulk of the accelerated electrons, containing lower-energy (T h bulk=500 ± 100 keV) more divergent electrons (35 ± 5°), which transports about 35% of the laser energy. The relativistic component manifests itself by the coherent 2ω0 emission due to the modulation of the electron density in the interaction zone. The bulk component induces a strong target heating producing measurable yields of thermal emission from the foils rear side. Our data and modeling demonstrate two mechanisms of fast electron energy deposition: resistive heating due to the neutralizing return current and collisions of fast electrons with plasma electrons. The resistive mechanism is more important at shallow target depths, representing an heating rate of 100 eV per Joule of laser energy at 15 μm. Beyond that depth, because of the beam divergence, the incident current goes under 1012 Acm-2 and the collisional heating becomes more important than the resistive heating. The heating rate is of only 1.5 eV per Joule at 50 μm depth.  相似文献   

16.
17.
A new theory of the ground state energy of a two-dimensional electron fluid is presented. It is shown that the ring diagram contribution changes its analytical behavior atr s =21/2, wherer s is the usual density parameter defined by rS = 1/a 0( n)1/2,a 0 being the Bohr radius andn is the electron density. For smallr s , a high density series is obtained in agreement with the previous calculation. For larger s , a hitherto unknown low density series is obtained. In the low density region, the first order exchange energy is completely cancelled out by a term from the ring contribution so that the ground state energy decreases in proportion tor s –2/3 , followed byr s /–4/3 and higher order terms. The energy is found to be minimum atr s=1.4757, the minimum value being –0.481915 Rydbergs.  相似文献   

18.
The parameters of characteristic sulfur K α-rays generated from SF6 clusters that are surrounded by argon atoms and are irradiated by intense laser radiation have been analyzed. It has been found that the formation of large SF6 clusters under the optimum experimental parameters is accompanied by the high-efficiency generation of the characteristic X rays, and the flux density of the characteristic X-ray photons is 100 photons/(mrad2 pulse) at a laser-pulse energy of 5 mJ. It has been shown that the third-harmonic generation process can be used to characterize the spatial sizes of the gas-cluster jet and the region of the cluster plasma.  相似文献   

19.
The 40Ca(p,p′ α) reaction has been studied at an incident proton energy Ep = 99.5 MeV for proton laboratory scattering angles Θplab = 17°, 23° and 27°. Emission of α particles coincident with the scattered proton has been measured for an angular range Θα 0° − 180° relative to the recoil axis. A multipole decomposition for the α0-decay channel to the 36Ar ground state has been performed from the angular-correlation functions. The energy distribution of the dominating E2 strength deduced in the excitation energy range Ex = 11–21 MeV agrees reasonably well with the results from electron and α-induced α0-decay investigations. The exhaustion of the E2 energy-weighted sum rule in this channel up to an energy of 17 MeV is 16.1(4.0)%, in accord with the study of the (α, α′ α0) reaction. However, this value is twice what is found in the (e,e′ α0) experiment in the same energy region. Thus, the puzzling discrepancy in the E2 strengths derived from electromagnetic and hadronic probes remains unsolved.  相似文献   

20.
Molecular vibrations of C2H2 and C2D2 adsorbed on Pt(111) at 140 K and ∼300K have been measured by high resolution electron energy loss spectroscopy. The comparison of C2H2 and C2D2 spectra allows an unambiguous assignment of the observed losses to the excitation of C−H bending, C−H stretching, and C−C stretching modes of nondissociatively adsorbed acetylene. From the relative intensities of losses the hybridisation state is determined to be nearsp 2. The C−C stretching frequency indicates a C−C bond order of ∼1.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号