首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Quantum magnetization and magnetoresistance oscillations are detected in the quasi-two-dimensional organic metal (BEDO-TTF)5[RbHg(SCN)4]2 for the first time. The magnetization oscillation spectrum corresponds to a calculated Fermi surface provided that a magnetic breakdown is realized. The magnetoresistance oscillation spectrum contains additional frequencies, one of which can unambiguously be related to quantum interference. An analysis of the angular dependence of the magnetoresistance oscillation amplitude indicates that the many-body interactions in this metal are weak.  相似文献   

2.
The magnetization oscillations in the quasi-two-dimensional organic metal (BEDO-TTF)5[CsHg(SCN)4]2 are thoroughly investigated over a wide range of magnetic field directions at different temperatures down to 0.4 K. The results obtained are in good agreement with the shape and sizes of the Fermi surface calculated from the x-ray diffraction data. Apart from the fundamental frequencies, the combination frequencies are found in the magnetization oscillation spectrum. It is demonstrated that these combination frequencies are governed by the motion of charge carriers along the real closed orbits inside the network of magnetic breakdown orbits formed under the action of the magnetic field. It is uniquely established that the combination frequencies previously revealed in the magnetoresistance oscillation spectrum of the same metal are associated with the quantum interference effect. The angular dependences of the oscillation amplitude exhibit minima, which are explained by the spin splitting of the Landau levels.  相似文献   

3.
We report on the inter-layer oscillatory conductance of the two-dimensional organic superconductor (BEDO-TTF)2ReO4H2O measured in static and pulsed magnetic fields of up to 15 and 52 T, respectively. In agreement with previous in-plane studies, two Shubnikov-de Haas oscillation series linked to the two electron and the hole orbits are observed. The influence of the magnitude and orientation of the magnetic field with respect to the conducting plane is studied in the framework of the conventional two- and three-dimensional Lifshits-Kosevich (LK) model. Deviations of the data from this model are observed in low fields strongly tilted with respect to the normal to the conducting plane. In this latter case, the observed behaviour is consistent with an unexplained lowering of the cyclotron effective mass. At high magnetic field, the oscillatory data could have been compatible with the occurrence of a magnetic breakdown orbit built from the hole and electron orbits. However, the increase of the cyclotron effective mass, linked to the electron orbits, as the magnetic field increases above 12 T is consistent with a field-induced phase transition. In the lower field range, where the conventional LK model holds, the analysis of the angle dependence of the oscillations amplitude suggests significant renormalisation of the effective Landé factor. Received 22 August 2000 and Received in final form 20 December 2000  相似文献   

4.
Resonant microwave absorption in a (BEDO-TTF)2ReO4(H2O) organic conductor single crystal at a temperature of 1.9 K, a magnetic field of up to 70 kOe, and in the frequency band between 30 and 120 GHz has been studied. A spectral component due to the cyclotron resonance (CR) of two-dimensional charge carriers has been identified for ν⩾80 GHz and H⩾10 kOe. The effective mass m(ω) increases with the frequency from m≈0.8m 0 at ν=80 GHz to m≈0.95m 0 at ν=120 GHz. Measurements of the CR line position and FWHM as functions of frequency yield an independently determined imaginary part of the memory function M(ω), which controls the dynamic magnetoconductivity, and the relaxation time τ(ν=100 GHz)≈2.9×10−11 s, which is more than thirty times the value of this parameter in the low-frequency limit τ(ν→0). The anomalous behavior of the CR line position and FWHM is caused by the dispersion of both real and imaginary parts of M(ω), which are probably due to strong Fermi-liquid effects. Zh. éksp. Teor. Fiz. 111, 979–987 (March 1997)  相似文献   

5.
6.
The polarized reflectivity and optical conductivity spectra of microcrystals of the new organic conductor (BEDO-TTF)5[CsHg(SCN)4]2 based on the donor molecule bis(ethylenedioxy)tetrathiafulvalene (BEDO-TTF) have been studied in the spectral ranges 600–6500 and 9000–40000 cm?1 at 300 K for three principal lattice directions. The optical evidence for the quasi-two-dimensional character of the conducting electronic system is obtained. The conclusion is made that the studied crystal is the quasi-two-dimensional semimetal with overlapping electron energy bands. The basic parameters of the electronic system of the crystal are determined in the framework of the Drude model. It is found that the allowed electron energy bands of the crystal are somewhat narrower than those of the previously studied structurally allied superconductor based on the same molecule. The features of vibrational structure are identified in the σ(ω) spectra for the specified three polarizations.  相似文献   

7.
To study the Josephson-vortex system, we have measured the vortex-flow resistance as a function of magnetic field parallel to the ab plane in Bi(2)Sr(2)CaCu(2)O(8+y) single crystals. Novel periodic oscillations of the vortex-flow resistance have been observed in a wide range of temperatures and magnetic fields. The period of the oscillations corresponds to the field needed to add "one" vortex quantum per "two" intrinsic Josephson junctions. The flow velocity is related to a matching effect between the lattice spacing of Josephson vortices along the layers and the width of the sample. These results suggest that Josephson vortices form a triangular lattice in the ground state where the oscillations occur.  相似文献   

8.
The interlayer and intralayer resistances and Shubnikov-de Haas oscillations in a new dual-layered quasi-two-dimensional organic metal (BETS)4CoBr4(C6H4Cl2) with a periodically varying structure of cation layers have been studied. It has been shown that the interlayer resistivity corresponds to an incoherent or weakly incoherent transport regime. The oscillations of the magnetoresistance have been described by a model of a chain of coherent magnetic breakdown orbits taking into account the quantum interference effect. The behavior of the interlayer transport, as well as quantum oscillations, is in good agreement with the theoretical calculations of the band structure.  相似文献   

9.
We report the observation of quantum oscillations in the underdoped cuprate superconductor YBa2Cu4O8 using a tunnel-diode oscillator technique in pulsed magnetic fields up to 85 T. There is a clear signal, periodic in inverse field, with frequency 660+/-15 T and possible evidence for the presence of two components of slightly different frequency. The quasiparticle mass is m(*)=3.0+/-0.3m(e). In conjunction with the results of Doiron-Leyraud et al. for YBa2Cu3O6.5, the present measurements suggest that Fermi surface pockets are a general feature of underdoped copper oxide planes and provide information about the doping dependence of the Fermi surface.  相似文献   

10.
Dynamic behavior of the pH-regulated oscillations has been studied for the hydrogen peroxide oxidation of thiosulfate ions in the presence of trace amounts of copper(II) ions in a semibatch reactor. A solution of 0.08 M Na(2)S(2)O(3) and 0.112 M NaOH was flowed at 0.160 mL/min into 300 mL of solution containing the H(2)O(2) and Cu(2+) in a vessel. There exists a critical value of the H(2)O(2) or Cu(2+) concentrations below which the system does not oscillate. The oscillations appear due to an infinite period bifurcation at low initial concentrations of the H(2)O(2). The initial concentration of Cu(2+) may be considered as a bifurcation parameter in this case. Increase of the initial hydrogen peroxide concentration causes the pH-regulated oscillations through a nondegenerate supercritical Hopf bifurcation. The classification of bifurcations is based on the analysis of the behavior of oscillation amplitude and period at different initial concentrations of the H(2)O(2) and Cu(2+). Our results show a possibility to distinguish different scenarios for the appearance of transient oscillations in semibatch experiments. (c) 1996 American Institute of Physics.  相似文献   

11.
Quantum oscillations in the layer structure of thin metal films   总被引:1,自引:0,他引:1  
Understanding the underlying physical principles that determine the internal structure of objects at the atomic scale is critical for the advancement of nanoscale science. We have performed synchrotron x-ray diffraction studies to determine the structural properties of smooth Pb films with varying thicknesses of 6 to 18 monolayers deposited on a Si(111) substrate at 110 K. We observe quasibilayer variations in the atomic interlayer spacings of the films consistent with charge density oscillations due to quantum confinement of conduction electrons and surface-interface interference effects. Quantum oscillations in atomic step height are also deduced.  相似文献   

12.
We study the forms of the orbits in a symmetric configuration of a realistic model of the H(2)O molecule with particular emphasis on the periodic orbits. We use an appropriate Poincare surface of section (PSS) and study the distribution of the orbits on this PSS for various energies. We find both ordered and chaotic orbits. The proportion of ordered orbits is almost 100% for small energies, but decreases abruptly beyond a critical energy. When the energy exceeds the escape energy there are still nonescaping orbits around stable periodic orbits. We study in detail the forms of the various periodic orbits, and their connections, by providing appropriate stability and bifurcation diagrams. (c) 2001 American Institute of Physics.  相似文献   

13.
Pressure dependence of the Shubnikov-de Haas (SdH) oscillations spectra of the quasi-two dimensional organic metal (ET)8[ Hg4Cl12(C6H5Br)2] have been studied up to 1.1 GPa in pulsed magnetic fields of up to 54 T. According to band structure calculations, its Fermi surface can be regarded as a network of compensated orbits. The SdH spectra exhibit many Fourier components typical of such a network, most of them being forbidden in the framework of the semiclassical model. Their amplitude remains large in all the pressure range studied which likely rules out chemical potential oscillation as a dominant contribution to their origin, in agreement with recent calculations relevant to compensated Fermi liquids. In addition to a strong decrease of the magnetic breakdown field and effective masses, the latter being likely due to a reduction of the strength of electron correlations, a sizeable increase of the scattering rate is observed as the applied pressure increases. This latter point, which is at variance with data of most charge transfer salts is discussed in connection with pressure-induced features of the temperature dependence of the zero-field interlayer resistance.  相似文献   

14.
ENDOR measurements at 25 K have been used to determine the hyperfine coupling tensors for all ten protons in the VO(H2O)5 2+ ion in single crystals of Mg(NH4)2(SO4)26H2O. The traceless components of all the tensors are close to axial and their use in a point dipole treatment enables a very plausible geometrical model of the complex ion to be constructed. Six of the protons in the equatorial water molecules have substantial positive isotropic couplings and it is suggested that these reflect the direct admixture of hydrogen 1s components into the singly occupied orbital.  相似文献   

15.
针对海藻三维荧光光谱线性降维方法不理想、模型识别准确率低的问题,提出通过局部线性嵌入(LLE)算法进行降维、通过黄金正弦算法(Gold-SA)对支持向量机(SVM)进行优化来构建分类模型的方法。将LLE算法降维后的海藻三维荧光光谱数据作为SVM的输入,并与其他两种降维方法进行对比。结果显示:LLE算法的降维效果最好,识别准确率最高。为了进一步提高门类识别能力,采用Gold-SA对SVM进行优化并建立Gold-SA-SVM模型,再将其与其他4种分类模型进行对比。结果显示,Gold-SA-SVM模型在分类识别准确率、精准率、召回率和F1分数上都有明显提高,该方法可准确识别抑食金球藻、小球藻、细长聚球藻的门类,可为褐潮研究工作提供有效的参考。  相似文献   

16.
We apply pressure-modulated conductance microscopy to metal/molecule/metal switches. Apart from pressure-induced conductance peaks that indicate nanoscale conducting pathways, we also observe dips and oscillations for devices with conductance between 1 and 2 conductance quantum. The conductance oscillations arise from interfering electron waves along one or two quantum conductance channels between two partially transmitting electrode surfaces at room temperature, underscoring these devices' potential as coherent, atomic-scale switches.  相似文献   

17.
18.
19.
Comparative investigations of secondary ion emission, electron induced ion emission and flash filament signals from polycrystalline vanadium surfaces exposed to well-defined O2, H2, H2O and (O2 + H2) doses (<500 L) have been carried out. The vanadium target could be heated and bombarded by either electrons (300 eV) or ions (3 keV) under ultra high vacuum conditions (<10?10 Torr). The investigations were carried out with a computer controlled ultra high vacuum mass spectrometer. The experimental results establish exact reproducible spectra of well defined surface layers. They give detailed insight into the reactions between H2, O2 H2O and vanadium, and some interactions between these species. They further indicate the importance of bulk and surface diffusion as well as the influence of the probing ion and electron bombardment. A clear distinction between bulk oxygen, surface oxides, and adsorbed oxygen for the vanadium-oxygen interaction at room temperature could be established. For the interaction of hydrogen with clean and oxygen covered vanadium surfaces the formation of adsorbed hydrogen, bulk solution of hydrogen, and the formation of OH groups and H2O could be demonstrated. A detection limit below 10?5 of one single monolayer for metal bonded hydrogen could be established.  相似文献   

20.
Crystalline [CuNd2(C4O4)4(H2O)16]·2H2O constructed of complexes of trivalent neodymium and divalent copper, has been synthesized and studied by EPR. The square anion groups (C4O4) enter as bridge ligands, forming chains of neodymium ions interconnected by (C4O4)Cu(C4O4) fragments. It is found that the relaxation rate of the neodymium subsystem at room temperature significantly exceeds the exchange interaction rate between copper and neodymium ions. Under these conditions the magnetic properties of the crystal are determined by two magnetically nonequivalent chains of copper ions, which do not interact. The intrachain exchange interaction via hydrogen bonds is estimated to be ∼0.1 cm−1. As one proceeds from the high-temperature (250<T<300 K) to the low-temperature region (T<40 K), a substantial change in the nature of the interaction is revealed. An unusual magnetic structure given in a crystal is observed at low temperatures, which is determined by the presence of two magnetically nonequivalent “ribbons,” formed by the interacting copper and neodymium ions: chains of copper ions are framed on two sides by chains of neodymium ions. The magnitude of the parameter of the exchange interaction between the copper and neodymium ions is estimated as J Cu-Nd⩾0.2 cm−1. An exchange interaction between magnetically nonequivalent neodymium ions is not revealed in the EPR spectra. Fiz. Tverd. Tela (St. Petersburg) 39, 2057–2061 (November 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号