首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoelectron spectroscopy (XPS and UPS) was used to study the deposition of metal layers (Ag, Cu, and Au) onto pentacene films. Very low work functions were measured (PhiAg = 3.91 eV, PhiCu = 3.93 eV, and PhiAu = 4.3 eV) for all of the metals, in agreement with results from the literature. The intensities of the C 1s core-level signals from pentacene that were monitored during stepwise metal deposition leveled off at a value of about 30% of a thick pentacene film. This C 1s intensity is comparable to that of one monolayer of pentacene deposited onto the respective metal. The valence band spectra of metals deposited onto pentacene and spectra collected for pentacene deposited onto bare metal surfaces are very similar. These findings lead to the conclusion that approximately one monolayer of pentacene is always present on top of the freshly deposited metal film, which explains the very low work function of the metals when they are deposited onto organic films. We expect similar behavior with other nonreactive metals deposited onto stable organic layers.  相似文献   

2.
We have carried out electron energy-loss investigations of the lowest singlet excitons in pentacene at 20 K. Our studies allow to determine the full exciton band structure in the a?, b? reciprocal lattice plane. The lowest singlet exciton can move coherently within this plane, and the resulting exciton dispersion is highly anisotropic. The analysis of the energetically following (satellite) features indicates a strong admixture of charge transfer excitations to the exciton wave function.  相似文献   

3.
Pentacene, C22H14, crystallizes in different morphologies characterized by their d(001)‐spacings of 14.1, 14.5, 15.0 and 15.4 Å. We have studied the crystal structure of the 14.1 and 14.5 Åd‐spacing morphologies grown by vapour transport and from solution. We find a close correspondence between the 14.1 Å structure reported by Holmes, Kumaraswamy, Matzeger & Vollhardt [Chem. Eur. J. (1999), 5 , 3399–3412] and the 14.5 Å structure reported by Campbell, Monteath Robertson & Trotter [Acta Cryst. (1961), 14 , 705–711]. Single crystals commonly adopt the 14.1 Åd‐spacing morphology with an inversion centre on both mol­ecules in the unit cell. Thin films grown on SiO2 substrates above 350 K preferentially adopt the 14.5 Åd‐spacing morphology, with a slightly smaller unit‐cell volume.  相似文献   

4.
6,13-Dihydro-6,13-ethanopentacene-15,16-dione gave pentacene efficiently both in solid and in solution by irradiation of light.  相似文献   

5.
《Chemical physics letters》1996,250(1):137-144
Applying methods developed for single molecule spectroscopy to small ensembles, we have recorded high-resolution fluorescence-excitation spectra for pentacene in all substitutional sites of a p-terphenyl single crystal. The difference in intersystem crossing efficiency for pentacene molecules in the various substitutional sites is discussed on the basis of these spectra and data from optically detected magnetic resonance experiments.  相似文献   

6.
The energetics and kinetics of the thermal decomposition of pentacene oxyradicals were studied using a combination of ab initio electronic structure theory and energy-transfer master equation modeling. The rate coefficients of pentacene oxyradical decomposition were computed for the range of 1500-2500 K and 0.01-10 atm and found to be both temperature and pressure dependent. The computational results reveal that oxyradicals with oxygen attached to the inner rings are kinetically more stable than those with oxygen attached to the outer rings. The latter decompose to produce CO at rates comparable to those of phenoxy radical, while CO is unlikely to be produced from oxyradicals with oxygen bonded to the inner rings.  相似文献   

7.
6,13-Bis(trimethylsilyl)pentacene was synthesized by a coupling reaction of bicyclic dilithiobutadiene with diiodonaphthalene followed by aromatization. Diels-Alder reaction of 6,13-bis(trimethylsilyl)pentacene with dienophiles afforded the corresponding second-ring adducts. Elimination of two silyl groups gave the second-ring Diels-Alder adducts of parent pentacene.  相似文献   

8.
Terahertz transient conductivity measurements are performed on pentacene single crystals, which directly demonstrate a strong coupling of charge carriers to low frequency molecular motions with energies centered around 1.1 THz. We present evidence that the strong coupling to low frequency motions is the factor limiting the conductivity in these organic semiconductors. Our observations explain the apparent paradox of the "bandlike" temperature dependence of the conductivity beyond the validity limit of the band model.  相似文献   

9.
In recent years, due to its high hole-mobility, high on/off current ratio and low threshold voltage, pentacene and its derivatives have found increasing application in the fabrication of light-emitting diodes, field-effect transistors and photovoltaic cells. It has also emerged as an alternative to silicon due to its similar performance to inorganic semiconductors. Pentacene cannot be isolated from the petroleum fractions like other acenes such as anthracene or tetracene, and therefore it needs to be chemically synthesized. The first successful synthesis of pentacene was reported in early 19th century where pentacene was obtained via dehydrogenation of 6,14-dihydropentacene. Since then a number of methods have been reported for the synthesis of pentacene. This review describes various strategies used for the synthesis of pentacene and its derivatives reported since 2005.  相似文献   

10.
The electronic structure of rubrene/pentacene and pentacene/rubrene bilayers has been investigated using soft X-ray absorption spectroscopy, resonant X-ray emission spectroscopy, and density-functional theory calculations. X-ray absorption and emission measurements reveal that it has been possible to alter the lowest unoccupied and the highest occupied molecular orbital states of rubrene in rubrene/pentacene bilayer. In the reverse case, one gets p* molecular orbital states originating from the pentacene layer. Resonant X-ray emission spectra suggest a reduction in the hole-transition probabilities for the pentacene/rubrene bilayer in comparison to reference pentacene layer. For the rubrenepentacene structure, the hole-transition probability shows an increase in comparison to the rubrene reference. We also determined the energy level alignment of the pentacene-rubrene interface by using X-ray and ultraviolet photoelectron spectroscopy. From these comparisons, it is found that the electronic structure of the pentacene-rubrene interface has a strong dependence on interface characteristics which depends on the order of the layers used.  相似文献   

11.
We report the synthesis and characterization of a series of alkoxy-substituted silylethynylated pentacene derivatives (R = CH(2)CH(2), CHCH, CH(2)). All three compounds are easily prepared, soluble in common organic solvents, and stable both as solids and in solution. Two of the derivatives possess significant pi-face interactions in the crystal. Values for lambda(max) for these new pentacene derivatives range from 621 to 674 nm, and oxidation potentials lie between 109 and 301 mV versus ferrocene.  相似文献   

12.
13.
A soluble 2,3,9,10-tetrakis(trimethylsilyl)pentacene (1) was synthesized; the discovery of the radical cationic character of in solution through EPR measurement has provided insights into the sensitivity of acenes towards light and oxygen.  相似文献   

14.
The intramolecular electronic structures and intermolecular electronic interactions of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene), 6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]-pentacene (TP-5 pentacene), and 2,2,10,10-tetraethyl-6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (EtTP-5 pentacene) have been investigated by the combination of gas-phase and solid-phase photoelectron spectroscopy measurements. Further insight has been provided by electrochemical measurements in solution, and the principles that emerge are supported by electronic structure calculations. The measurements show that the energies of electron transfer such as the reorganization energies, ionization energies, charge-injection barriers, polarization energies, and HOMO-LUMO energy gaps are strongly dependent on the particular functionalization of the pentacene core. The ionization energy trends as a function of the substitution observed for molecules in the gas phase are not reproduced in measurements of the molecules in the condensed phase due to polarization effects in the solid. The electronic behavior of these materials is impacted less by the direct substituent electronic effects on the individual molecules than by the indirect consequences of substituent effects on the intermolecular interactions. The ionization energies as a function of film thickness give information on the relative electrical conductivity of the films, and all three molecules show different material behavior. The stronger intermolecular interactions in TP-5 pentacene films lead to better charge transfer properties versus those in TIPS pentacene films, and EtTP-5 pentacene films have very weak intermolecular interactions and the poorest charge transfer properties of these molecules.  相似文献   

15.
A novel alpha-diketone precursor of pentacene, 6,13-dihydro-6,13-ethanopentacene-15,16-dione, was prepared and converted successfully to pentacene in 74 % yield by photolysis of the precursor in toluene: Irradiation of the diketone solution in toluene with light of 460 nm under an Ar atmosphere caused the solution to change from yellow to fluorescent orange-pink within a few minutes, after which, purple precipitates appeared. After 35 min, the solution changed to colorless and the purple precipitates were filtered to give pentacene in 74 % yield. By contrast, in the presence of oxygen, the color of the solution changed from yellow to pale yellow, and only 6,13-endoperoxide of pentacene was quantitatively obtained. The rate of the reaction upon photolysis was measured by observing the decay of n-pi* absorption of the precursor at 460 nm, and was found to be similar in both the presence and absence of oxygen. Therefore, the photoreaction of the alpha-diketone precursor seemed to occur via the singlet excited state. Because the T-T absorption of pentacene was observed upon photolysis of the precursor in the nanosecond transient absorption measurement under an Ar atmosphere, the excited triplet state of the pentacene generated singlet oxygen by sensitization, and it reacted with the ground-state pentacene to give the 6,13-endoperoxide. The alpha-diketone deposited on glass was also converted successfully to pentacene film by photoirradiation. In addition, diketone precursors of a mixture of 2,8- and 2,9-dibromopentacene and 2,6-trianthrylene were also prepared and their photoconversion was performed.  相似文献   

16.
Porous metal-incorporated nanostructured organic compounds represent an innovative concept in hydrogen storage. This work reports in detail the first practical realization of electrochemical hydrogen storage in such a material, Li-doped pentacene. Although lithium doping is at a very low level the conductivity of pentacene increases considerably after the doping of lithium, which makes ordered layer-stacked Li-doped pentacene very promising as electrode material for electrochemical hydrogen storage. A discharge capacity of ca. 238 mA h g(-1) has been achieved in 6M KOH for the Li-doped pentacene electrode, which is comparable to that obtained from commonly used electrode material, LaNi5 alloy for electrochemical hydrogen storage. Furthermore, a great improvement in the hydrogen storage capacity can be expected from the Li-doped pentacene by simply raising the lithium doping level.  相似文献   

17.
Functionalization of the pro-cata positions of pentacene with groups held perpendicular to the aromatic plane, in this case through a rigid 1,3-dioxole unit, yields pentacene derivatives that are stable and soluble, and still maintain edge-to-face interactions in the solid state.  相似文献   

18.
A high-performance orthogonal time-of flight (TOF) mass spectrometer, in combination with the matrix assisted laser desorption/ionization (MALDI) source operating at elevated pressure (∼1 torr in N2), was used to perform MALDI-TOF analyses of pentacene and some of its derivatives with and without an added matrix. These molecules are among the most interesting semiconductor materials for organic thin film transistor applications (OTFT). The observation of ion-molecule reactions between “cold” analyte ions and neutral analyte molecules in the gas phase has provided some insight into the mechanism of pentacene cluster formation and its functionalized derivatives. Furthermore, some of the matrices employed to assist the desorption/ionization process of these compounds were observed to influence the outcome via ion-molecule reactions of analyte ions and matrix molecules in the gas phase. The stability and reactivity of the compounds and their clusters in the MALDI plume during gas-phase expansion were evaluated; possible structures of the resulting clusters are discussed. The MALDI-TOF technique was also helpful in distinguishing between two isomeric forms of bis-[(triisopropylsilyl)-ethynyl]-pentacene.  相似文献   

19.
Lattice-dynamical, calculations for evidently non-rigid molecules of aromatic hydrocarbons have been carried out on tetracene and pentacene. In these substances, “out-of plane” vibrations mix extensively with lattice vibrations, and significant differences can be noted between results from a “rigid-body” and a “non-rigid” treatment. For tetracene crystals, whose Raman spectral data are given in the literature, the agreement with experiment is satisfactory. This confirms the validity of such procedures for interpreting and/or predicting spectroscopic behaviour, starting from empirical atom—atom potentials and valence force fields.  相似文献   

20.
1,2,3,4,8,9,10,11-Octaalkylpentacenes were synthesized in high yields from tetrahydropentacenes by the pentacene-DDQ adduct method in the presence of amine. Dehydro side-coupling reactions of pentacene derivatives proceeded to give the corresponding 6,6'-dipentacenyl derivatives in high yields in the presence of a catalytic amount of CSA and 0.5 equiv of DDQ. The structures of dehydro side-coupling products of substituted pentacenes were determined by NMR and X-ray analysis. The combination of acid and DDQ was necessary for the dehydro side coupling of substituted pentacenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号