首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Linoleic acid radical products formed by radical reaction (Fenton conditions) were trapped using 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and analysed by reversed-phase liquid chromatography coupled to electrospray mass spectrometry (LC-MS). The linoleic acid radical species detected as DMPO spin adducts comprised oxidized linoleic acid and short-chain radical species that resulted from the breakdown of carbon and oxygen centred radicals. Based on the m/z values, the short-chain products were identified as alkyl and carboxylic acid DMPO radical adducts that exhibited different elution times. The ions identified as DMPO radical adducts were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS spectra of linoleic acid DMPO radical adducts exhibited the fragment ion at m/z 114 and/or the loss of neutral molecule of 113 Da (DMPO) or 131 Da (DMPO + H2O), indicated to be DMPO adducts. The short-chain products identified allowed inference of the radical oxidation along the linoleic acid chain by abstraction of hydrogen atoms in carbon atoms ranging from C-8 to C-14. Other ions containing the fragment ion at m/z 114 in the LC-MS/MS spectra were attributed to DMPO adducts of unsaturated aldehydes, hydroxy-aldehydes and oxocarboxylic acids. The identification of aldehydic products formed by radical oxidation of linoleic acid peroxidation products, as short-chain product DMPO adducts, is a means of identifying lipid peroxidation products.  相似文献   

2.
The aim of this study was to determine the chemical structure of in vitro 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-modified oligodeoxynucleotides (ODNs) by exonuclease digestion and matrix-assisted laser desorption/ionization mass spectrometry. A single-stranded 11-mer ODN, 5'-d(CCATCGCTACC), was reacted with N-acetoxy-PhIP, resulting in the formation of one major and eight minor PhIP-ODN adducts. A 10 min treatment of the major and one minor PhIP-ODN adduct with a 3'-exonuclease, bovine intestinal mucosa phosphodiesterase (BIMP), and a 5'-exonuclease, bovine spleen phosphodiesterase, results in inhibition of the primary exonuclease activity at deoxyguanosine (dG) producing 5'-d(CCATCG(PhIP)) and 5'-d(G(PhIP)CTACC) product ions, respectively. Post-source decay (PSD) of these enzymatic end products identifies dG as the sole modification site in two 11-mer ODN-PhIP adducts. PSD of the minor PhIP-ODN adduct digestion end product, 5'-d(CCATCG(PhIP)), also reveals that the PhIP adducted guanine moiety is in an oxidized form. Prolonged treatment of the PhIP-ODN adducts at 37 degrees C with BIMP induces a non-specific, or endonuclease, enzymatic activity culminating in the formation of deoxyguanosine 5'-monophosphate-PhIP (5'-dGMP-PhIP). The PSD fragmentation pattern of the 5'-dGMP-PhIP [M + H](+) ion of the major adduct confirms PhIP binds to the C-8 position of dG. For the minor adduct, PSD results suggest that PhIP binds to the C-8 position of an oxidized guanine, supporting the hypothesis that this adduct arises from oxidative degradation, resulting in a spirobisguanidino structure.  相似文献   

3.
Formation of DNA-protein cross-links involving the initial formation of a guanine radical cation was investigated. For this purpose, riboflavin-mediated photosensitization of a TGT oligonucleotide in aerated aqueous solution in the presence of the KKK tripeptide was performed. We have shown that the nucleophilic addition of the epsilon-amino group of the central lysine residue of KKK to the C8 atom of either the guanine radical cation or its deprotonated form gives rise to the efficient formation of a Nepsilon-(guanin-8-yl)-lysine cross-link. Interestingly, the time course of formation of the above-mentioned cross-link was found to be not linear with the time of irradiation, and its formation rapidly reached a plateau. This is explained by secondary decomposition of the initially generated cross-link which could be further oxidized more efficiently than starting TGT oligonucleotide. One-electron oxidation of the initially generated cross-link was found to produce mainly two diastereomeric cross-links exhibiting a spiroimino-trilysine-dihydantoin structure as inferred from enzymatic digestion, CD, UV, NMR and mass spectrometry measurements. In addition, other minor cross-links, for which formation was favored at acidic pH, were assigned as lysine-guanine adducts in which the modified guanine base exhibits a guanidino-trilysine-iminohydantoin structure. A proposed mechanism for the formation of the different detected oligonucleotide-peptide cross-links is given. The high yield of formation of the detected cross-links strongly suggests that a DNA-protein cross-link involving a lysine residue linked to the C8 position of guanine could be generated in cellular systems if a lysine is located in the close vicinity of a guanine radical cation. KEYWORDS: oxidatively generated DNA damage, photosensitization, guanine radical cation, DNA-protein cross-links.  相似文献   

4.
Protein tyrosine nitration is one of the important regulatory mechanisms in various cellular phenomena such as cell adhesion, endo/exo-cytosis of cellular materials, and signal transduction. In the present study, electrospray ionization tandem mass spectrometry (ESI-MS/MS) with a linear ion-trap mass spectrometer was applied for identification of nitrated proteins and localization of the modified tyrosine residues. When angiotensin II(DRVYIHPF) was nitrated in vitro with tetranitromethane (TNM), the mass spectrum showed a shift of +45 Da which corresponded to tyrosine nitration. An additional +29 Da mass shift was also detected by ESI-MS. This differed from nitrated peptide analysis with matrix-associated laser desorption/ionization mass spectrometry (MALDI-MS), which showed oxygen neutral loss from the nitrated tyrosine residues upon laser irradiation. Hence the +29 Da mass shift of the nitrated peptide observed by ESI-MS suggested the introduction of an NO group for nitrosylation of tyrosine residues. To confirm this in vitro nitrosylation on the protein level, bovine serum albumin was in vitro nitrated with TNM and analyzed by ESI-MS/MS. As expected, +29 as well as +45 Da mass shifts were detected, and the +29 Da mass shift was found to correspond to the modification on tyrosine residues by NO. Although the chemical mechanism by which this occurs in ESI-MS is not clear, the +29 Da mass shift could be a new potential marker of nitrosylated peptides.  相似文献   

5.
This paper describes a novel method to map guanine bases in short oligonucleotides using a simple chemical modification reaction and subsequent analysis by electrospray ionization ion trap mass spectrometry (ITMS). In situ guanine-specific methylation followed by gas-phase fragmentation permits the determination of the positions of all guanine residues. Collision-induced dissociation (CID) of the monomethylated oligonucleotide strand promotes rapid depurination and further collision (MS3) of the apurinic oligonucleotide leads to preferential cleavage of the backbone at the site of depurination. The mass of the resulting complementary product ions verifies the position of each guanine base in the sequence. The utility of this methodology is demonstrated for oligonucleotide sequences up to 10 bases in length. In addition, this technique successfully illustrates the use of selective fragmentation for sequencing oligonucleotides by ITMS.  相似文献   

6.
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to investigate the fragmentation pattern of ten sesquiterpene lactones of the goyazensolide type under low-energy collision-induced dissociation (CID) using a triple quadrupole mass spectrometer. The analysis revealed that loss of CO(2)[M + H - 44](+) is the predominant process for compounds that exhibit a hydroxyl at C-8. In contrast, compounds with different acyloxy groups at C-8 fragment by means of elimination of the corresponding carboxylic acids [M + H - (R(2)CO(2)H)](+) and consecutive losses of CO and H(2)O. Our results also demonstrate the influence of both the stereochemistry of the acyloxy group at C-8 on the relative abundances of product ions and the hydroxyl at C-15, which creates an additional pathway, resulting in highly diagnostic product ions. This work clearly demonstrates the utility of tandem quadrupole low-resolution mass spectrometry for studies on the rationalization of the fragmentation of a series of compounds with a highly conserved core structure, but differing in substituent groups.  相似文献   

7.
Product ion spectra from thirteen C8-substituted alkylaniline adducts of guanine and deoxyguanosine were generated using electrospray ionization and quadrupole ion trap mass spectrometry and studied to investigate the possibility of differentiating isomeric adduct structures based upon the relative abundances of fragment ions derived from the alkylaniline-modified guanine bases (BH2+ ions). The structural discrimination of the BH2+ ions formed by attachment of isomeric alkylanilines to the C8 position of guanine is a challenging problem because the ions tend to yield product ion spectra that are qualitatively identical upon collisional activation. In this study, a statistical method, referred to as a similarity index, was used to compare the product ion spectra of isomeric BH2+ ions and differentiate their structures. All the adducts investigated could be distinguished from SIs calculated using 5–6 product ions. These results suggest that a searchable database of product ion spectra may be created and used to characterize DNA adducts from aromatic amines whenever they are detected at levels amenable to mass spectral analysis.  相似文献   

8.
The mechanism of the elimination of 118 Da from 11(15-->1)-abeo-taxanes was elucidated with the help of the tandem mass spectra of [M + NH(4)](+) and [M + Li](+) ions and the corresponding D-exchanged species. The fragmentation is triggered by the initial loss of the C-10 substituent. Evidence was also obtained for the stepwise elimination of acetone and acetic acid. Acetone is eliminated from the C-1 hydroxyisopropyl group and acetic acid from either the C-9 or C-7 acetoxy groups. The presence of an additional acetoxy group at C-13 leads to the direct elimination of 118 Da from [M + NH(4)](+) and [M + Li](+) ions involving the C-13 acetoxy group.  相似文献   

9.
The Mn-TMPyP/KHSO(5) system was used to oxidize guanine contained within a dinucleoside monophosphate d(GpT). To identify the guanine oxidation product having a mass with 4 amu above the mass of guanine itself, this relatively unstable compound was reduced to a more stable one. The ESI/MS and NMR data allowed us to propose a dehydro-guanidinohydantoin structure for the (G+4) guanine oxidation product.  相似文献   

10.
The mass spectra of several compounds with molecular weights in the 2500-20,000 Da range were obtained with a quadrupole mass spectrometer equipped with an atmospheric pressure ion source. Average molecular weight determinations of mellitin (2846.4 Da), a synthetic oligonucleotide (4262.8 Da), myoglobin (16,950.4 Da) and on the subunits of beta-lactoglobulin (18,277.1 Da) requiring as little as 1 pmol of material were achieved with accuracies and precisions of +/- 1 Da. An ion-spray interface was used to produce ions via the ion evaporation process, producing mass spectra containing a series of multiply-charged molecular species. A simple method for calculating the molecular weight of unknown compounds from the spectra containing multiply-charged ions is described.  相似文献   

11.
Aqueous ozonation of the 22 most common amino acids and some small peptides were studied by electrospray mass (ESI-MS) and tandem mass spectrometry. After 5 min of ozonation only His, Met, Trp, and Tyr form oxidation products clearly detectable by ESI-MS. For His, the main oxidation product is formed by the addition of three oxygen atoms, His + 30; for Met and Tyr by the addition of one oxygen atom, Met + O and Tyr + O, and for Trp by the addition of two oxygen atoms, Trp + 20. Ozone oxidation occurs rapidly, products are already detected after 30 s of ozonation, and the reactivity order is Met > Trp > Tyr > His. The structures of the oxygen addition products were investigated by electrospray product ion mass spectra, and by comparing these spectra to those of protonated intact amino acids, and when available, to those of model compounds. His + 30 was assigned as 2-amino-4-oxo-4-(3-formylureido)butanoic acid (1) formed by oxidation of the His imidazole ring, Met + O as methionine sulfoxide (2), Trp + 20 as N-formylkynurenine (4), and Tyr + O as a mixture of dihydroxyphenylalanines (7 and 8). Ozonation of peptides show that the same number of oxygen atoms are added as expected from the ozonation of the free amino acids. The product ion mass spectra of both the protonated intact peptides, MH+, and the main ozonation products (M + nO)H+ (n = 1-3) revealed b and y type ions as the main fragments, which allow one to assign the type and location of modified amino acid in the model peptides.  相似文献   

12.
Background: The translation or stability of the mRNAs from ferritin, m-aconitase, erythroid aminoevulinate synthase and the transferrin receptor is controlled by the binding of two iron regulatory proteins to a family of hairpin-forming RNA sequences called iron-responsive elements (IREs). The determination of higher-solution nuclear magnetic resonance (NMR) structures of IRE variants suggests an unusual hexaloop structure, leading to an intra-loop G-C base pair and a highly exposed loop guanine, and a special internal loop/bulge in the ferritin IRE involving a shift in base pairing not predicted with standard algorithms.Results: Cleavage of synthetic 55- and 30-mer RNA oligonucleotides corresponding to the ferritin IRE with complexes based on oxoruthenium(IV) shows enhanced reactivity at a hexaloop guanine and at a guanine adjacent to the internal loop/bulge with strong protection at a guanine in the internal loop/bulge. These results are consistent with the recent NMR structures. The synthetic 55-mer RNA binds the iron-regulatory protein from rabbit reticulocyte lysates. The DNA analogs of the 55- and 30-mers do not show the same reactivity pattern.Conclusions: The chemical reactivity of the guanines in the ferritin IRE towards oxoruthenium(IV) supports the published NMR structures and the known oxidation chemistry of the metal complexes, The results constitute progress towards developing stand-alone chemical nucleases that reveal significant structural properties and provide results that can ultimately be used to constrain molecular modeling.  相似文献   

13.
Oxidative damage to proteins can occur under physiological conditions through the action of reactive oxygen species, including those containing nitrogen such as peroxynitrite (ONO2-). Peroxynitrite has been shown in vitro to target tyrosine residues in proteins through free radical addition to produce 3-nitrotyrosine. In this work, we show that mass spectral patterns associated with 3-nitrotyrosine containing peptides allow identification of peptides containing this modification. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was used to characterize a synthetic peptide AAFGY(m-NO2)AR and several peptides containing 3-nitrotyrosine derived from bovine serum albumin treated with tetranitromethane. A unique series of ions were found for these peptides in addition to the mass shift of +45 Da corresponding to the addition of the nitro group. Specifically, two additional ions were observed at roughly equal abundance that correspond to the loss of one and two oxygens, and at lower abundances, two ions are seen that suggest the formation of hydroxylamine and amine derivatives. These latter four components appear to originate by laser-induced photochemical decomposition. MALDI-MS analysis of the synthetic peptide containing 3-nitrotyrosine revealed this same pattern. Post-source decay (PSD) MALDI-time-of-flight (TOF) and collisional activation using a prototype MALDI quadrupole TOF yielded extensive fragmentation that allowed site-specific identification of 3-nitrotyrosine. Conversion of peptides containing 3-nitrotyrosine to 3-aminotyrosine with Na2S2O4 yielded a single molecular ion by MALDI with an abundant sidechain loss under PSD conditions. These observations suggest that MALDI can provide a selective method for the analysis and characterization of 3-nitrotyrosine-containing peptides.  相似文献   

14.
A novel derivatization method for the analysis of primary amines by MALDI mass spectrometry is proposed. Tris(2,6-dimethoxyphenyl) methyl carbenium cation reacts smoothly with primary amines, forming permanently charged adducts with the mass increment +359 Da and absorbance in the UV region. The approach was tested on a number of amines, including biologically active compounds and therapeutic agents.  相似文献   

15.
The structural characterization of four steroidal saponin compounds involving two and three sugar groups, namely spirostanol saponins and furostanol saponins, were investigated by positive ion fast-atom bombardment (FAB), electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) techniques. Important structural information was obtained from collision-induced dissociation (CID) and FAB-MS spectra with different liquid matrices. It was found that a characteristic fragmentation involving the loss of 144 Da arising from the cleavage of the E-ring was observed when there was no sugar chain at the C-26 position. When a glucoside group was substituted at the C-26 position, this C-26 sugar moiety was preferentially eliminated. All of these compounds produced a major product ion with a stable skeleton structure at m/z 255. The results of this paper can assist structural analysis of mixtures of steroidal saponins.  相似文献   

16.
Ethoxidine (N-methyl-12-ethoxy-2,3,8,9-tetramethoxybenzo[c]phenanthridinium methylsulfonate salt) is a synthetic 2-methoxy-12-ethoxy derivative of the natural alkaloid fagaronine. This new inhibitor of DNA-topoisomerase I is considered as a potential antitumor agent with higher in vitro activity than fagaronine. In order to further improve the efficiency of ethoxidine, its in vitro biotransformation by hepatic monooxygenases and the structures of its metabolites were investigated by high-performance liquid chromatography (HPLC) combined with electrospray ionization tandem mass spectrometry (ESI-MS/MS) and accurate mass measurement by time-of-flight mass spectrometry (TOFMS). When ethoxidine was incubated with BNF-treated rat liver microsomes or with cells expressing different recombinant human cytochrome P450, the same four ethoxidine metabolites (m(1)-m(4)) were detected and were formed exclusively by CYP1A1. The structures of these metabolites were assigned from ESI-MS/MS mass spectra and compared with those of ethoxidine derivatives. Accurate mass measurements of in-source ESI-TOFMS fragment ions exhibited successive neutral losses of C(2)H(4) and CO for ethoxidine and its metabolites. Whereas a 15 Da loss (methyl radical) was observed for the metabolites m(1)-m(4) containing a quaternary ammonium group, a 16 Da loss (methane) was observed for ethoxidine and could have resulted from the presence of two methoxy groups at adjacent positions (C-2 and C-3). The proposed oxidative modifications of ethoxidine were further confirmed by determination of the number of exchangeable hydrogen atoms and by the proposed elemental compositions of the metabolites based on accurate mass measurements by TOFMS. Two major metabolites resulted from O-demethylation of ethoxidine; one was tentatively identified as 12-ethoxyfagaronine (m(3)) and the second as an O-demethylated ethoxidine isomer (m(4)). Two polar metabolites were shown to be O-demethylated (m(1)) and hydroxylated (m(2)) derivatives of 12-ethoxyfagaronine. When 12-ethoxyfagaronine was incubated under the same conditions as ethoxidine, m(2) was formed, thus supporting the proposal that 12-ethoxyfagaronine is the primary oxidative product of ethoxidine.  相似文献   

17.
The reactions of 1,2,3-triazolium-1-aminides 1 (readily available from benzil bishydrazones) with propiolate esters leads to fluorescent 2,5-dihydro-1,2,3-triazine derivatives 2, 3 in one pot. These synthetic reactions can be carried out in acetone, in water, or under solvent-free conditions. The reactions involve a Huisgen cycloaddition followed by a sequence of rearrangements. The final ring-expansion step was blocked by linking a six-methylene hydrocarbon chain between the prospective 1,2,3-triazine C-4 and C-6 atoms, using substrate 8 which gave the fused tricyclic azapropellane product 9 exclusively. X-ray crystal structures were determined for two 2,5-dihydro-1,2,3-triazine derivatives and for compound 9. The UV absorption of the 1,2,3-triazine derivatives showed a dual absorption at ca. 310 and ca. 390 nm with fluorescent emission at ca. 480 and 528 nm (for excitation at 317 nm). The significant Stokes shift of ca. 200 nm shows the potential for biological fluorescent labeling experiments.  相似文献   

18.
An ion trap LC-MS/MS method is described for the analysis of C-glycosylflavone O-glycosides in crude methanolic extracts of plants. The method employs survey scans with and without the application of up-front collision induced dissociation (CID) to generate diagnostic ions for data-directed MS/MS. The spectra acquired allow assignment of the C-linked sugar to either the C-6 or C-8 position of the aglycone and provide data on the molecular mass of the compound, the number and type of O-linked sugars and the molecular mass of the flavone aglycone. These data for the majority of C-glycosylflavone O-glycosides in an extract are obtained automatically in one LC-MS/MS analysis without manual pre-programming. Key to the assignment of the C-6 or C-8 site of C-glycosylation is the generation, by up-front CID, of the (0,1)X+ product ion formed by internal cleavage of the C-linked sugar. MS/MS of this ion is found to have diagnostic value in addition to the (0,2)X+ product ion described by other authors. Ion trap MS/MS spectra of [M+H]+ of the 6,8-di-C-glycosylflavones schaftoside and isoschaftoside show an additional and previously unreported diagnostic product ion that is useful in determining the type of sugar at the C-6 position. The product ion spectra of protonated kaempferol 3-O-glucosylrhamnosides show similarities to the spectra of C-glycosylflavone O-glycosides; this is a potential source of confusion if the analysis of such glycosides is limited solely to MS/MS of [M+H]+.  相似文献   

19.
Alkali metal cation adducts, [M+Alk](+), and [M-H](-) ions of four known glycosylated furofuran lignans, (+)-pinoresinol 4-O-beta-D-glucopyranoside, (+)-phylliroside, (+)-8-hydroxypinoresinol 4-O-beta-D-glucopyranoside, and (+)-8-hydroxypinoresinol 8-O-beta-D-glucopyranoside, recently isolated from Carex distachya, were generated by electrospray ionization and allowed to undergo collisionally activated dissociation (CAD) in a quadrupole ion trap (QIT) and in a triple quadrupole (TQ) mass spectrometer. CAD mass spectra of [M+Na](+) and [M+Li](+) adducts revealed the presence of structurally diagnostic product ions. CAD mass spectra of deprotonated glycosylated furofuran lignans showed the typical neutral loss of 162 Da when the glucose residue was bound to a phenolic oxygen atom. When glycosylation occurred at an alcoholic oxygen, as for (+)-8-hydroxypinoresinol 8-O-beta-D-glucopyranoside, a neutral loss of 180 Da represented the main fragmentation pathway. Selective hydrogen/deuterium (H/D) exchange of all the acidic hydrogen atoms of furofuran glycosides, performed by introducing lignan glycosides in D(2)O/CH(3)OD solutions, were employed to obtain information on the nature of the product ions generated during TQ/CAD processes. Energy-resolved TQ/CAD mass spectra of deprotonated lignan glycosides and their deprotonated aglycones were used in a qualitative way to infer information on the integrated energetic picture of CAD fragmentations and to investigate the mechanism of the predominant dissociation/isomerization processes. On the basis of the hypothesized fragmentation mechanisms, gas-phase features of the furofuran ring were derived. The presence of an OH substituent in the C8 position decreased the electron density in the adjacent C8' position, modifying the fragmentation pathway.  相似文献   

20.
PHOTOADDITION OF CHLORPROMAZINE TO GUANOSINE-5'-MONOPHOSPHATE   总被引:1,自引:1,他引:1  
Abstrart—The photochemistry of chlorpromazine (CPZ) with guanosine-5'-monophosphate (GMP) was studied as a model for the photoaddition of CPZ to DNA. Irradiation of CPZ with calf thymus DNA produced a product emitting at 520 nm, whereas with GMP emission was at 495 nm. HPLC separation of photolysis mixtures of [3H]CPZ with GMP and [14C]GMP with CPZ indicated that three photoadducts were formed. One of the adducts fluoresced at 500 nm and appeared to be the product detected but not separated by Fujita et al. (Photochem. Photobiol . 1981, 34 , 101–105). A second adduct emitted at 460 nm, and the third was nonfluorescent. The photoadduct emitting at 500 nm was characterized by UV, fluorescence, and NMR to be an adduct from coupling of the C-8 position of guanine to the C-2 position of the phenothiazine ring of CPZ. The cation radical of CPZ (CPZ +) does not appear to be an intermediate since enzymatically generated CPZ + formed a product that eluted with a retention time close to that of the photoadducts, but did not emit at 520 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号