首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well‐exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)‐based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off‐loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance‐to‐price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer‐class GPUs this improvement equally reflects in the performance‐to‐price ratio. Although memory issues in consumer‐class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost‐efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well‐balanced ratio of CPU and consumer‐class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime. © 2015 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

2.
The MARTINI force field: coarse grained model for biomolecular simulations   总被引:4,自引:0,他引:4  
We present an improved and extended version of our coarse grained lipid model. The new version, coined the MARTINI force field, is parametrized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical compounds. To reproduce the free energies of these chemical building blocks, the number of possible interaction levels of the coarse-grained sites has increased compared to those of the previous model. Application of the new model to lipid bilayers shows an improved behavior in terms of the stress profile across the bilayer and the tendency to form pores. An extension of the force field now also allows the simulation of planar (ring) compounds, including sterols. Application to a bilayer/cholesterol system at various concentrations shows the typical cholesterol condensation effect similar to that observed in all atom representations.  相似文献   

3.
Different biomolecular force fields (OPLS‐AA, AMBER03, and GROMOS96) in conjunction with SPC, SPC/E and TIP3P water models are assessed for molecular dynamics simulations in a tetragonal lysozyme crystal. The root mean square deviations for the Ca atoms of lysozymes are about 0.1 to 0.2 nm from OPLS‐AA and AMBER03, smaller than 0.4 nm from GROMOS96. All force fields exhibit similar pattern in B‐factors, whereas OPLS‐AA and AMBER03 accurately reproduce experimental measurements. Despite slight variations, the primary secondary structures are well conserved using different force fields. Water diffusion in the crystal is approximately ten‐fold slower than in bulk phase. The directional and average water diffusivities from OPLS‐AA and AMBER03 along with SPC/E model match fairly well with experimental data. Compared to GROMOS96, OPLS‐AA and AMBER03 predict larger hydrophilic solvent‐accessible surface area of lysozyme, more hydrogen bonds between lysozyme and water, and higher percentage of water in hydration shell. SPC, SPC/E and TIP3P water models have similar performance in most energetic and structural properties, but SPC/E outperforms in water diffusion. While all force fields overestimate the mobility and electrical conductivity of NaCl, a combination of OPLS‐AA for lysozyme and the Kirkwood‐Buff model for ions is superior to others. As attributed to the steric restraints and surface interactions, the mobility and conductivity in the crystal are reduced by one to two orders of magnitude from aqueous solution. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

4.
A new water potential, DMIP (distributed multipoles, implicit polarization), is constructed using distributed multipoles to describe the electrostatic interactions, while accounting for polarization implicitly. In this procedure, small clusters are randomly sampled from atomistic simulations of bulk water using the AMOEBA (Ren and Ponder, J Comput Chem 2002, 23, 1497) potential. The multipole moments of the central water in each cluster are obtained from ab initio densities for each cluster, and the moments are then averaged over all clusters. Properties of bulk water calculated using DMIP compare favorably with existing data from AMOEBA simulations and experiment, with a conservative estimate of reduction in compute time of roughly 40%. The implicit force-field is also shown to work compatibly with existing polarizable multipole-based force-fields for biomolecules.  相似文献   

5.
A re-parameterization of the standard TIP4P water model for use with Ewald techniques is introduced, providing an overall global improvement in water properties relative to several popular nonpolarizable and polarizable water potentials. Using high precision simulations, and careful application of standard analytical corrections, we show that the new TIP4P-Ew potential has a density maximum at approximately 1 degrees C, and reproduces experimental bulk-densities and the enthalpy of vaporization, DeltaH(vap), from -37.5 to 127 degrees C at 1 atm with an absolute average error of less than 1%. Structural properties are in very good agreement with x-ray scattering intensities at temperatures between 0 and 77 degrees C and dynamical properties such as self-diffusion coefficient are in excellent agreement with experiment. The parameterization approach used can be easily generalized to rehabilitate any water force field using available experimental data over a range of thermodynamic points.  相似文献   

6.
We present a new hybrid explicit/implicit solvent method for dynamics simulations of macromolecular systems. The method models explicitly the hydration of the solute by either a layer or sphere of water molecules, and the generalized Born (GB) theory is used to treat the bulk continuum solvent outside the explicit simulation volume. To reduce the computational cost, we implemented a multigrid method for evaluating the pairwise electrostatic and GB terms. It is shown that for typical ion and protein simulations our method achieves similar equilibrium and dynamical observables as the conventional particle mesh Ewald (PME) method. Simulation timings are reported, which indicate that the hybrid method is much faster than PME, primarily due to a significant reduction in the number of explicit water molecules required to model hydration effects.  相似文献   

7.
We propose a molecular simulation method using genetic algorithm (GA) for biomolecular systems to obtain ensemble averages efficiently. In this method, we incorporate the genetic crossover, which is one of the operations of GA, to any simulation method such as conventional molecular dynamics (MD), Monte Carlo, and other simulation methods. The genetic crossover proposes candidate conformations by exchanging parts of conformations of a target molecule between a pair of conformations during the simulation. If the candidate conformations are accepted, the simulation resumes from the accepted ones. While conventional simulations are based on local update of conformations, the genetic crossover introduces global update of conformations. As an example of the present approach, we incorporated genetic crossover to MD simulations. We tested the validity of the method by calculating ensemble averages and the sampling efficiency by using two kinds of peptides, ALA3 and (AAQAA)3. The results show that for ALA3 system, the distribution probabilities of backbone dihedral angles are in good agreement with those of the conventional MD and replica-exchange MD simulations. In the case of (AAQAA)3 system, our method showed lower structural correlation of α-helix structures than the other two methods and more flexibility in the backbone ψ angles than the conventional MD simulation. These results suggest that our method gives more efficient conformational sampling than conventional simulation methods based on local update of conformations. © 2018 Wiley Periodicals, Inc.  相似文献   

8.
We present a simple and practical method to include ligand electronic polarization in molecular dynamics (MD) simulation of biomolecular systems. The method involves periodically spawning quantum mechanical (QM) electrostatic potential (ESP) calculations on an extra set of computer processors using molecular coordinate snapshots from a running parallel MD simulation. The QM ESPs are evaluated for the small-molecule ligand in the presence of the electric field induced by the protein, solvent, and ion charges within the MD snapshot. Partial charges on ligand atom centers are fit through the multi-conformer restrained electrostatic potential (RESP) fit method on several successive ESPs. The RESP method was selected since it produces charges consistent with the AMBER/GAFF force-field used in the simulations. The updated charges are introduced back into the running simulation when the next snapshot is saved. The result is a simulation whose ligand partial charges continuously respond in real-time to the short-term mean electrostatic field of the evolving environment without incurring additional wall-clock time. We show that (1) by incorporating the cost of polarization back into the potential energy of the MD simulation, the algorithm conserves energy when run in the microcanonical ensemble and (2) the mean solvation free energies for 15 neutral amino acid side chains calculated with the quantum polarized fluctuating charge method and thermodynamic integration agree better with experiment relative to the Amber fixed charge force-field.  相似文献   

9.
10.
A novel species of DNA--protein conjugate was synthesized by chemically linking DNA oligonucleotides to Aequorea victoria green fluorescent protein mutant EYFP. An additional cysteine was added to the C-terminus of the EYFP by genetic engineering and used to covalently attach amino-modified oligonucleotide with the aid of the heterobifunctional crosslinker sSMCC. EYFP maintained its fluorescence upon conjugation. The oligonucleotide provides an additional binding site to the fluorescent protein, and hence, the EYFP conjugate could be specifically hybridized with both complementary DNA-protein conjugates in-solution as well as immobilized at capture oligonucleotides attached to a solid substrate. These studies are paving the way for future applications in the self-assembly of photoactive supramolecular complexes, such as artificial light-harvesting systems.  相似文献   

11.
Direct three-colour fluorescence cross-correlation spectroscopy can reveal interactions between three fluorescently labelled biomolecules, giving insight toward the complex events that constitute signal transduction pathways. Here we provide the optical and theoretical basis for this technology and demonstrate its ability to detect specific biological associations between nanoparticle-labelled DNA molecules.  相似文献   

12.
The excess proton in aqueous media plays a pivotal role in many fundamental chemical (e.g., acid-base chemistry) and biological (e.g., bioenergetics and enzyme catalysis) processes. Understanding the hydrated proton is, therefore, crucial for chemistry, biology, and materials sciences. Although well studied for over 200 years, excess proton solvation and transport remains to this day mysterious, surprising, and perhaps even misunderstood. In this feature article, various efforts to address this problem through computer modeling and simulation will be described. Applications of computer simulations to a number of important and interesting systems will be presented, highlighting the roles of charge delocalization and Grotthuss shuttling, a phenomenon unique in many ways to the excess proton in water.  相似文献   

13.
We describe the application of a special purpose board for molecular dynamics simulations, named MDGRAPE-3, to the problem of simulating periodic bio-molecular systems. MDGRAPE-3 is the latest board in a series of hardware accelerators designed to calculate the nonbonding long-range interactions much more rapidly than normal processors. So far, MDGRAPEs were mainly applied to isolated systems, where very many nonbonded interactions were calculated without any distance cutoff. However, in order to regulate the density and pressure during simulations of membrane embedded protein systems, one has to evaluate interactions under periodic boundary conditions. For this purpose, we implemented the Particle-Mesh Ewald (PME) method, and its approximation with distance cutoffs and charge neutrality as proposed by Wolf et al., using MDGRAPE-3. When the two methods were applied to simulations of two periodic biomolecular systems, a single MDGRAPE-3 achieved 30-40 times faster computation times than a single conventional processor did in the both cases. Both methods are shown to have the same molecular structures and dynamics of the systems.  相似文献   

14.
So-called coarse-grained models are a popular type of model for accessing long time scales in simulations of biomolecular processes. Such models are coarse-grained with respect to atomic models. But any modelling of processes or substances involves coarse-graining, i.e. the elimination of non-essential degrees of freedom and interactions from a more fine-grained level of modelling. The basic ingredients of developing coarse-grained models based on the properties of fine-grained models are reviewed, together with the conditions that must be satisfied in order to preserve the correct physical mechanisms in the coarse-graining process. This overview should help the reader to determine how realistic a coarse-grained model of a biomolecular system is, i.e. whether it reflects the underlying physical mechanisms or merely provides a set of pretty pictures of the process or substances of interest.  相似文献   

15.
Alkali (Li(+), Na(+), K(+), Rb(+), and Cs(+)) and halide (F(-), Cl(-), Br(-), and I(-)) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Aqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4P EW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells.  相似文献   

16.
To make improved treatments of electrostatic interactions in biomacromolecular simulations, two possibilities are considered. The first is the famous particle–particle and particle–mesh (PPPM) method developed by Hockney and Eastwood, and the second is a new one developed here in their spirit but by the use of the multipole expansion technique suggested by Ladd. It is then numerically found that the new PPPM method gives more accurate results for a two-particle system at small separation of particles. Preliminary numerical examination of the various computational methods for a single configuration of a model BPTI–water system containing about 24,000 particles indicates that both of the PPPM methods give far more accurate values with reasonable computational cost than do the conventional truncation methods. It is concluded the two PPPM methods are nearly comparable in overall performance for the many-particle systems, although the first method has the drawback that the accuracy in the total electrostatic energy is not high for configurations of charged particles randomly generated. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The application of evaluation of implicit solvent methods for the simulation of biomolecules is described. Detailed comparisons with explicit solvent are described for the modeling of peptide and proteins in continuum aqueous solvent. In addition, we are presenting new data on the simulation of DNA with implicit solvent and describe the development of a heterogeneous dielectric model for the simulation of integral membranes. The performance of implicit solvent simulations based on the GBMV generalized Born method is compared with explicit solvent simulations, and implications for the simulation of very large biomolecular complexes is discussed. We are anticipating that the work described herein will lead to new, efficient modeling tools that will allow the simulation of longer timescales and larger system sizes in order to meet current and future challenges by the experimental community.  相似文献   

18.
During the past few years, graphics processing units (GPUs) have become extremely popular in the high performance computing community. In this study, we present an implementation of an acceleration engine for the solvent–solvent interaction evaluation of molecular dynamics simulations. By careful optimization of the algorithm speed‐ups up to a factor of 54 (single‐precision GPU vs. double‐precision CPU) could be achieved. The accuracy of the single‐precision GPU implementation is carefully investigated and does not influence structural, thermodynamic, and dynamic quantities. Therefore, the implementation enables users of the GROMOS software for biomolecular simulation to run the solvent–solvent interaction evaluation on a GPU, and thus, to speed‐up their simulations by a factor 6–9. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

19.
Tissue-distribution profiles are crucial for understanding the characteristics of cells and tissues in terms of their differential expression of genes. Most of the currently available resources for tissue-distribution profiles are either specialized for a few particular organisms, tissue types and disease stages or do not consider the “tissue ontology” levels for the calculation of the tissue-distribution profiles. Therefore, we have developed “TissueDistributionDBs”, a repository of tissue-distribution profiles based on the expressed sequence tags (ESTs) data extracted from the UniGene database by employing “Tissue Ontology” available at BRENDA. To overcome the occurrence of the natural language variations in the EST’s source tissue-type terms, we have generated a “tissue synonym library” and standardized these tissue-type terms by cross-referencing to the controlled vocabulary for tissue-type terms available at BRENDA “Tissue Ontology”. Furthermore, we have provided a quantitative expression for genes among the tissue types at various anatomical levels by constructing “tissue slims”. Concurrently, the expression among tissue types is used for tissue-distribution calculations. The resulting output profiles can be queried by the Sequence Retrieval System (SRS) and are currently available for 20 different model organisms. We benchmarked our database system against the Swissprot database using a set of 40 different tissue types. This database system is useful for the understanding of the tissue-specific expression patterns of genes, which have implications for the identification of possible new therapeutic drug targets, in gene discovery, and in the design and analysis of micro-arrays. TissueDistributionDBs can be accessed via the World Wide Web (www) at http://genius.embnet.dkfz-heidelberg.de/menu/tissue_db/.  相似文献   

20.
Novel, porous, functionalised silica particles have been developed with controlled morphology, which promote covalent attachment of fluorescent dyes which can act as an optical barcode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号