首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on what is to our knowledge the first continuous-wave (cw) optical parametric oscillator (OPO) that is pumped by a tunable fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled LiNbO(3) crystal in a four-mirror ring cavity. At a pump power of 8.3 W provided by the wavelength-tunable Yb-doped fiber laser, the singly resonant OPO generates 1.9 W of 3200-nm cw idler radiation. The singly resonant OPO was tuned from 1515 to 1633 nm (signal) and from 3057 to 3574 nm (idler) by means of the crystal temperature and poling period. We obtained a wide idler tuning range, from 2980 to 3700 mn, by tuning the wavelength of the fiber laser from 1032 to 1095 nm.  相似文献   

2.
We report on an optical parametric oscillator (OPO) that is synchronously pumped directly by a diode laser. This laser is an actively mode-locked master-oscillator power-amplifier system that produces 20-ps pulses at 927 nm with a repetition rate of 2.5 GHz and an average power of 0.9 W. The OPO, which is a singly resonant device based on periodically poled lithium niobate, generates 7.8-ps pulses. The OPO threshold is 300 mW of average pump power, and the maximum average idler output power is 78 mW at a wavelength of 2100 nm. By changing the crystal temperature we can wavelength tune the output in the ranges 1530-1737 nm (signal) and 1986-2348 nm (idler). Rapid wavelength tuning of the OPO over 46 nm (signal) and 74 nm (idler) is achieved through tuning the cavity length over 28 microm by use of a piezoelectric transducer.  相似文献   

3.
We report a continuous-wave optical parametric oscillator (OPO) based on periodically poled RbTiOAsO(4) (PPRTA). The singly resonant OPO, which is located within a Ti:sapphire laser, has a high-finesse signal cavity and delivers a maximum output power of 270 mW to the nonresonant idler wave at 2.92mum , through a 4.5-mm PPRTA crystal. For room-temperature operation and a crystal with a 30-mu;m grating period, pump tuning over 838-848 nm results in OPO tuning over 1.13-1.27mum (signal) and 2.53-3.26mum (idler), limited by the bandwidth of optical coatings. PPRTA exhibits thermal properties superior to those of periodically poled LiNbO(3) .  相似文献   

4.
A new optical parametric oscillator (OPO) for the mid-infrared wavelength region of 3-3.8mum with an idler output power of up to 1.5 W has been developed. The singly resonant OPO is pumped by a single-mode, 10-W, continuous-wave Nd:YAG laser and consists of a bow-tie ring cavity with a fan-out periodically poled lithium niobate crystal and a low-finesse intracavity air-spaced etalon. The single-frequency idler output can be continuously tuned over 24 GHz with 700-mW power by tuning of the pump laser. The tuning was demonstrated by recording of an absorption line of ethane with photoacoustic spectroscopy.  相似文献   

5.
We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-micros-long pulses from an actively Q-switched Yb fiber laser. At an average fiber laser power of 3.6 W, the SRO generates 1.9-micros-long pulses with a repetition rate of 25 kHz and an average power of 560 mW at 3360 nm. The SRO was tuned from 1518 to 1634 nm (signal) and from 3145 to 3689 nm (idler) via the crystal temperature and poling period. By all-electronic tuning of the fiber laser wavelength over 19 nm, tuning of the mid-infrared idler wavelength over 195 nm was achieved.  相似文献   

6.
High-average-power KTiOAsO4 optical parametric oscillator   总被引:4,自引:0,他引:4  
Using noncritically phase-matched 1-cm(2) -aperture KTiOAsO(4) (KTA) crystals in an optical parametric oscillator (OPO), we have demonstrated a sustained average signal power of 33 W at 1534.7 nm. To our knowledge, this is the highest-average-power signal ever generated by an OPO. The pump source was a 100-Hz Q -switched 1064-nm Nd:YAG laser. Compared with that of the similar and more-common material KTiOPO>(4) , idler absorption in KTA is negligible, allowing high-power operation with minimal thermally induced refractive distortion in the OPO crystal.  相似文献   

7.
We demonstrate, for what is the first time to our knowledge, long-term stable, continuously tunable operation of a doubly resonant optical parametric oscillator (OPO) pumped by a single-stripe diode laser without the use of an external semiconductor amplifier. The OPO is based on periodically poled lithium niobate and is pumped by a 150-mW distributed Bragg grating diode laser. 18-mW total output power is generated at 1.3- and 2.3-mum wavelengths. A cavity-length servo system allows continuous signal tuning of 17 GHz and idler tuning of 10 GHz, limited only by the range of a piezoelectric cavity mirror mount. OPO tuning is demonstrated from 1.1 to 1.4 mum and from 2.2 to 3.7 mum.  相似文献   

8.
We report on an idler-resonant femtosecond optical parametrical oscillator(OPO)based on BiB3O6(BiBO)crystal,synchronously pumped by a frequency-doubled,mode-locked Yb:KGW laser at 515 nm.The idler wavelengths of OPO can be tuned from 1100 nm to 1540 nm.At a repetition rate of 75.5 MHz,the OPO generates as much as 400 mW of idler power with 3.1 W of pump power,the corresponding pulse duration is 80 fs,which is 1.04 times of Fourier transform-limited(FTL)pulse duration at 1305 nm.In addition,the OPO exhibits excellent beam quality with M2<1.8 at 1150 nm.To the best of our knowledge,this is the first idler-resonant femtosecond OPO pumped by 515 nm.  相似文献   

9.
We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a four-mirror ring cavity. By tuning of the fiber-laser wavelength over 33 nm through an intracavity acousto-optic tunable filter, the OPO idler wavelength is tuned from 3160 to 3500 nm in 330 micros, corresponding to an idler frequency-tuning speed of 28 THz/ms. At a fiber-laser power of 6.6 W at 1074 nm, the singly resonant OPO generates 1.13-W cw idler radiation at 3200 nm.  相似文献   

10.
The performance characteristics of a doubly (signal and idler) resonant continuous-wave optical parametric oscillator based on periodically poled lithium niobate and pumped by a 100-mW single-mode laser diode at 810 nm are reported. Pump power thresholds as low as 16 mW and wavelength tuning over the range 1.15-1.25 microm at the signal and 2.31-2.66 microm at the idler were achieved through variation of crystal temperature, pump wavelength, and grating period. Up to 5 mW of signal output was obtained with the single-mode diode pump, and signal powers of up to 39 mW were obtained when pumping with a 400-mW injection-locked broad-area diode laser.  相似文献   

11.
报道了一个低阈值宽调谐、被动调Q、单谐振掺MgO的周期性极化铌酸锂晶体(PPMgLN)光学参量振荡器。利用被动调Q的Nd:YVO4激光器作为泵浦源,采用外腔结构,在室温下,实现了PPMgLN晶体的准相位匹配光学参量振荡。光参量振荡的阈值仅为0.27W(单脉冲能量4.5μJ、脉宽35ns);在泵浦光为1.35W(脉冲能量8.2μJ、脉宽35ns),PPMgLN周期为31μm时,获得了161.9mW,3.202μm脉冲激光输出;同时获得了98.5mW的1.594μm信号光输出,总的光光转化效率达到19.3%。通过改变晶体的周期,实现了闲频光3.13~4.19μm,信号光1.43~1.65μm的宽带可调谐激光输出。  相似文献   

12.
A few‐cycle, broadband, singly‐resonant optical parametric oscillator (OPO) for the mid‐infrared based on MgO‐doped periodically‐poled LiNbO3 (MgO:PPLN), synchronously pumped by a 20‐fs Ti:sapphire laser is reported. By using crystal interaction lengths as short as 250 µm, and careful dispersion management of input pump pulses and the OPO resonator, near‐transform‐limited, few‐cycle idler pulses tunable across the mid‐infrared have been generated, with as few as 3.7 optical cycles at 2682 nm. The OPO can be continuously tuned over 2179‐3732 nm (4589‐2680 cm‐1) by cavity delay tuning, providing up to 33 mW of output power at 3723 nm. The idler spectra exhibit stable broadband profiles with bandwidths spanning over 422 nm (FWHM) recorded at 3732 nm. The effect of crystal length on spectral bandwidth and pulse duration is investigated at a fixed wavelength, confirming near‐transform‐limited idler pulses for all grating interaction lengths. By locking the repetition frequency of the pump laser to a radio‐frequency reference, and without active stabilization of the OPO cavity length, an idler power stability better than 1.6% rms over >2.75 hours is obtained when operating at maximum output power, in excellent spatial beam quality with TEM00 mode profile. Photograph shows a multigrating MgO:PPLN crystal used as a nonlinear gain medium in the few‐cycle femtosecond mid‐IR OPO. The visible light is the result of non‐phase‐matched sum‐frequency mixing between the interacting beams.  相似文献   

13.
搭建了Nd:YVO4/SESAM锁模激光器,采用LDA泵浦的Innoslab对其进行功率放大,最后同步泵浦MgO:PPLN实现了宽调谐皮秒中红外光参量运转。通过改变MgO:PPLN的温度和通道,实现了信号光1415~1557 nm、闲频光3362~4290 nm范围的宽调谐输出,其中最高的光光转换效率为17.5%。同步泵浦功率为16 W,脉冲重复频率为116.9 MHz时,同时获得1.33 W的1518 nm信号光和1.26 W的3558 nm闲频光输出。  相似文献   

14.
A LiNbO(3) optical parametric oscillator (OPO) pumped at 930nm shows a wide phase-matching curve. Each pulse produced by the OPO has a very broad natural linewidth, from 1480 to 1800 nm for the signal and from 1950 to 2550 nm for the idler. The emission wavelength is controlled thanks to an electrically tunable Fabry-Perot interferometer inserted into the OPO cavity. The signal wavelength is electrically tuned in the range 1450-1850nm without crystal rotation.  相似文献   

15.
We report on a diode-laser pumped cw optical parametric oscillator (OPO) based on quasi-phase-matched periodically poled lithium tantalate. Pumped by the 2.3-W single-frequency, nearly diffraction-limited 925-nm output of an InGaAs diode master-oscillator power amplifier, the pump and signal resonant OPO generates a single-frequency idler wave with an output of as much as 244 mW. The wavelengths of the signal and idler waves are widely tunable in the range 1.55-2.3mum by use of different poling periods (27.3 to 27.9mum) and by variation of the crystal temperature in the range 70-190 degrees C.  相似文献   

16.
We generated 1 mW of average output power at 2.8 THz (bandwidth of approximately 300 GHz) in a diffraction-limited beam by placing a 6-mm-long quasi-phase-matched GaAs crystal inside the cavity of a synchronously pumped optical parametric oscillator (OPO). The OPO used type-II-phase-matched periodically poled lithium niobate as a gain medium and was pumped by a mode-locked laser at 1064 nm, with a 7 ps pulse duration, 50 MHz repetition rate, and 10 W average output power. The terahertz radiation was generated by difference frequency mixing between the signal and idler waves of the near-degenerate doubly resonant OPO.  相似文献   

17.
A watt-level, single-frequency, continuous-wave (cw) singly resonant optical parametric oscillator (OPO) based on MgO:sPPLT is described. Pumped in the green by a frequency-doubled cw diode-pumped Nd:YVO(4) laser at 532 nm, the OPO can provide up to 1.59 W of single-frequency idler output with a linewidth of ~7 MHz at pump depletions of as much as 67%. Using a compact ring resonator and optimized focusing in a 30 mm crystal, a singly resonant oscillation threshold of 2.84 W has been obtained under single-pass pumping. With a single grating period of 7.97 microm, continuous signal and idler coverage over 852-1417 nm is obtained by temperature tuning between 61 degrees C and 236 degrees C. The influence of thermal lensing on idler output power across the SRO tuning range is also verified.  相似文献   

18.
4 (KTP) optical parametric oscillators (OPOs) with pump and idler resonant cavities. With a linear two-mirror cavity the pump power at threshold was 70 mW. The single-frequency signal and idler output wavelengths were tuned in the range of 1025 to 1040 nm and 1250 to 1380 nm by tuning the dye laser in the range of 565 to 588 nm. With a dual three-mirror cavity the threshold was 135 mW. Pumped by 500 mW of 578 nm radiation the 1040 nm single-frequency signal wave output power was 84 mW. Power and frequency stable operation with a spectral bandwidth of less than 9 MHz was obtained by piezo-electrically locking the length of the pump resonant cavity to the dye laser wavelength. Similar performance was achieved by placing the idler resonant OPO inside the resonator of the dye laser. With this system power stable and single-frequency operation was achieved with a spectral bandwidth of less than 11 MHz for the idler wave. Received: 3 February 1998/Revised version: 9 March 1998  相似文献   

19.
We report a cw optical parametric oscillator (OPO) in a novel architecture comprising two nonlinear crystals in a single cavity, providing two independently tunable pairs of signal and idler wavelengths. Based on a singly resonant oscillator design, the device permits access to arbitrary signal and idler wavelength combinations within the parametric gain bandwidth and reflectivity of the OPO cavity mirrors. Using two identical 30 mm long MgO:sPPLT crystals in a compact four-mirror ring resonator pumped at 532 nm, we generate two pairs of signal and idler wavelengths with arbitrary tuning across 850-1430 nm, and demonstrate a frequency separation in the resonant signal waves down to 0.55 THz. Moreover, near wavelength-matched condition, coherent energy coupling between the resonant signal waves, results in reduced operation threshold and increased output power. A total output power >2.8 W with peak-to-peak power stability of 16% over 2 h is obtained.  相似文献   

20.
Hang-Hang Yu 《中国物理 B》2022,31(12):124203-124203
We report a compact, efficient optical parametric oscillator (OPO) based on a periodically poled potassium titanyl phosphate (PPKTP) crystal pumped by a 532 nm laser, which generated 1.51 W of average power at the signal wavelength of 709 nm with the pulse duration of ~ 1.0 ns. The extraction efficiency was up to 59%. To the best of our knowledge, this is the first report on Watt-level green-pumped PPKTP-based singly resonant oscillator OPO (SRO-OPO). The precise build-up time of OPO was determined to be 1.6 ns benefitting from the characteristic of twin-peak pulse profile of pump beam. The spectrum width of the idler was also measured to be 4.2 nm with the central wavelength of 2134 nm at 0.2 nm spectral resolution of optical spectrum analyzer. In addition, the beam quality of M2 < 1.9 of generated signal exhibits a good consistency with M2 < 1.5 for the pump source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号