首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Experiments of helical excitation using piezoelectric actuators on jet flows and lifted flames are performed to enhance the understanding of the effects of vortical structures of various instability modes on the stabilization mechanism of the lifted flame. In addition to the common ring and braid structures, five or seven azimuthal fingers (or lobes) can be identified in the transverse image of the jet near field. Excitation with various helical modes enhances the azimuthal structures and entrainment in the near field. When helically excited with the asymmetric m=1 mode, one of the fingers is enhanced and may evolve into a strong streamwise vortex. The streamwise vortices generated in the braid region between the adjacent ring vortices may enhance fuel-air mixing due to additional azimuthal entrainment upstream of a lifted flame when helically excited with the m=1 mode. Therefore, the streamwise vortex serves as an additional path of high probability of premixed flammable layer for the upstream propagation of the lifted flame so that the flame base on one side of the lifted flame may extend farther upstream and the flame base is inclined. In addition to the inclined flame base, multiple-legs phenomenon is also observed in the flame base, which is strongly associated with fingers of the helical modes of the jet flow. Received: 21 August 1997/Accepted: 24 January 1999  相似文献   

2.
Flow structure of premixed propane–air swirling jet flames at various combustion regimes was studied experimentally by stereo PIV, CH* chemiluminescence imaging, and pressure probe. For the non-swirling conditions, a nonlinear feedback mechanism of the flame front interaction with ring-like vortices, developing in the jet shear layer, was found to play important role in the stabilisation of the premixed lifted flame. For the studied swirl rates (S = 0.41, 0.7, and 1.0) the determined domain of stable combustion can be divided into three main groups of flame types: attached flames, quasi-tubular flames, and lifted flames. These regimes were studied in details for the case of S = 1.0, and the difference in the flow structure of the vortex breakdown is described. For the quasi-tubular flames an increase of flow precessing above the recirculation zone was observed when increased the stoichiometric coefficient from 0.7 to 1.4. This precessing motion was supposed to be responsible for the observed increase of acoustic noise generation and could drive the transition from the quasi-tubular to the lifted flame regime.  相似文献   

3.
Laser Doppler Anemometry (LDA) and Planar Laser-Induced Fluorescence (PLIF) measurements have been performed in a turbulent nonpremixed jet flame. One of the features of this configuration is a central co-axial fuel jet surrounded by a turbulent annular air flow. The whole is placed within a low-speed coflowing air stream. This three-flow system with turbulent primary air differs from flow systems used for nonpremixed jet flames reported in the literature and is very useful for obtaining information on the mixing process between fuel and primary air. Next to the characterization of the velocity field, special attention has been paid to the conditional seeding of the central fuel jet and of the annular air flow. Together with visualizations of the OH radical, an important combustion intermediate which is formed during combustion, and the NO radical, which is seeded to the central jet flow, the resulting statistics reveal the properties of small- and large-scale structures in the flame.  相似文献   

4.
C. Wang  Z. Y. Han  M. Situ 《Shock Waves》2006,15(2):129-135
The high-speed combustible gas ignited by a hot gas jet, which is induced by shock focusing, was experimentally investigated. By use of the separation mode of shock tube, the test section of a single shock tube is split into two parts, which provide the high-speed flow of combustible gas and pilot flame of hot gas jet, respectively. In the interface of two parts of test sections the flame of jet was formed and spread to the high-speed combustible gas. Two kinds of the ignitions, 3-D “line-flame ignition” and 2-D “plane-flame ignition”, were investigated. In the condition of 3-D “line-flame ignition” of combustion, thicker hot gas jet than pure air jet, was observed in schlieren photos. In the condition of 2-D “plane-flame ignition” of combustion, the delay time of ignition and the angle of flame front in schlieren photos were measured, from which the velocity of flame propagation in the high-speed combustible gas is estimated in the range of 30–90m/s and the delay time of ignition is estimated in the range of 0.12–0.29ms. PACS 47.40.Nm; 82.40.FpPart of this paper was presented at the 5th International Workshop on Shock/Vortex Interaction, Kaohsiung, October 27–31, 2003.  相似文献   

5.
A scramjet combustor with double cavitybased flameholders was experimentally studied in a directconnected test bed with the inflow conditions of M = 2.64,Pt = 1.84 MPa,Tt = 1 300 K.Successful ignition and selfsustained combustion with room temperature kerosene was achieved using pilot hydrogen,and kerosene was vertically injected into the combustor through 4×φ 0.5 mm holes mounted on the wall.For different equivalence ratios and different injection schemes with both tandem cavities and parallel cavities,flow fields were obtained and compared using a high speed camera and a Schlieren system.Results revealed that the combustor inside the flow field was greatly influenced by the cavity installation scheme,cavities in tandem easily to form a single side flame distribution,and cavities in parallel are more likely to form a joint flame,forming a choked combustion mode.The supersonic combustion flame was a kind of diffusion flame and there were two kinds of combustion modes.In the unchoked combustion mode,both subsonic and supersonic combustion regions existed.While in the choked mode,the combustion region was fully subsonic with strong shock propagating upstream.Results also showed that there was a balance point between the boundary separation and shock enhanced combustion,depending on the intensity of heat release.  相似文献   

6.
A new imaging technique was developed that provides two-dimensional images of the mixture fraction (ξ), scalar dissipation rate (χ), temperature (T), and fuel consumption rate in a turbulent non-premixed jet flame. The new method is based on “seeding” nitric oxide (NO) into a particular carbon monoxide–air flame in which it remains passive. It is first demonstrated that the mass fraction of NO is a conserved scalar in the present carbon monoxide–air flame configuration, using both laminar flame calibration experiments and computations with full chemistry. Simultaneous planar laser-induced fluorescence (PLIF) and planar Rayleigh scattering temperature imaging allow a quantitative determination of the local NO mass fraction and hence mixture fraction in the turbulent jet flame. The instantaneous mixture fraction fields in conjunction with the local temperature fields are then used to determine quantitative scalar dissipation rate fields. Advantages of the present technique include an improved signal-to-noise ratio over previous Raman scattering techniques, improved accuracy near the stoichiometric contour because simplifying chemistry assumptions are not required, and the ability to measure ξ and χ in flames experiencing localized extinction. However, the method of measuring ξ based on the passive NO is restricted to dry carbon monoxide–air flames due to the well-controlled flame chemistry. Sample imaging results for ξ, χ, T, and are presented that show high levels of signal-to-noise while resolving the smallest mixing scales of the turbulent flowfield. The application, accuracy, and limitations of the present technique are discussed.  相似文献   

7.
An investigation of the leading edge characteristics in lifted turbulent methane-air (gaseous) and ethanol-air (spray) diffusion flames is presented. Both combustion systems consist of a central nonpremixed fuel jet surrounded by low-speed air co-flow. Non-intrusive laser-based diagnostic techniques have been applied to each system to provide information regarding the behavior of the combustion structures and turbulent flow field in the regions of flame stabilization. Simultaneous sequential CH-PLIF/particle image velocimetry and CH-PLIF/Rayleigh scattering measurements are presented for the lifted gaseous flame. The CH-PLIF data for the lifted gas flame reveals the role that ``leading-edge' combustion plays as the stabilization mechanism in gaseous diffusion flames. This phenomenon, characterized by a fuel-lean premixed flame branch protruding radially outward at the flame base, permits partially premixed flame propagation against the incoming flow field. In contrast, the leading edge of the ethanol spray flame, examined using single-shot OH-PLIF imaging and smoke-based flow visualization, does not exhibit the same variety of leading-edge combustion structure, but instead develops a dual reaction zone structure as the liftoff height increases. This dual structure is a result of the partial evaporation (hence partial premixing) of the polydisperse spray and the enhanced rate of air entrainment with increased liftoff height (due to co-flow). The flame stabilizes in a region of the spray, near the edge, occupied by small fuel droplets and characterized by intense mixing due to the presence of turbulent structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The present paper focuses on the analysis of unsteady flow and heat transfer regarding an axisymmetric impinging synthetic jet on a constant heat flux disc. Synthetic jet is a zero net mass flux jet that provides an unsteady flow without any external source of fluid. Present results are validated against the available experimental data showing that the SST/k − ω turbulence model is more accurate and reliable than the standard and low-Re k − ε models for predicting heat transfer from an impinging synthetic jet. It is found that the time-averaged Nusselt number enhances as the nozzle-to-plate distance is increased. As the oscillation frequency in the range of 16–400 Hz is increased, the heat transfer is enhanced. It is shown that the instantaneous Nu distribution along the wall is influenced mainly by the interaction of produced vortex ring and wall boundary layer. Also, the fluctuation level of Nu decreases as the frequency is raised.  相似文献   

9.
The effects of exit-wedge angle on evolution, formation, pinch-off, propagation and diffusive mass entrainment of vortex rings in air were studied using digital particle image velocimetry. Vortex rings were generated by passing a solenoid-valve-controlled air jet through a cylindrical nozzle. Experiments were performed over a wide range of exit-wedge angles (10° ≤ α ≤ 90°) of the cylindrical nozzle, initial Reynolds numbers (450 ≤ Re ≤ 4,580) and length-to-diameter ratios (0.9 ≤ L/D ≤ 11) of the air jet. For sharp edges (α ≤ 10°), a secondary ring may emerge at high Reynolds numbers, which tended to distort the vortex ring if ingested into it. For blunt edges (α ≥ 45°), by contrast, stable vortex rings were produced. The formation phase of a vortex ring was found to be closely related to its evolution pattern. An exit-wedge angle of 45° was found to be optimal for rapid pinch-off and faster propagation and better stability of a vortex ring. Diffusive mass entrainment was found to be between 35% and 40% in the early stages of a vortex ring propagation and it gradually increased throughout the course of vortex ring propagation. Entrainment fraction was found to be sensitive to the L/D ratio of the initial jet and decreases when the L/D ratio is increased.  相似文献   

10.
The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of −30 to 30 kPa for each equivalence ratio (Φ = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINOx simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated.  相似文献   

11.
A nonpremixed bluff-body burner flow and flame have been studied using planar flow visualization and species concentration imaging techniques. The burner consists of a central jet of CH 4 in a cylindrical bluff-body and an outer coflowing-air stream. Planar flow visualization, using Mie scattering from seed particles added to the fuel jet, Raman scattering from CH 4 and laser-induced fluorescence of CH combined with Raman scattering of CH 4 provided information on turbulent flow, mixing and combustion. The CH 4 imaging system utilized two cameras, which enhanced the dynamic range of the diagnostic system by a factor of 10 over a single-camera system. It was observed that the fuel jet stagnated on the axis due to interaction with the high velocity air flow. The flow and mixing were found to have significant coherent and noncoherent, large-scale, time-varying structures. The detailed CH 4 Raman and CH fluorescence measurements of an air-dominated bluff-body flame revealed that the stagnation zone governs mixing and flame stability. Through large-scale mixing, the stagnated jet feeds the recirculation zone and also creates a favorable condition to stabilize the flame detached from the bluff-body. The instantaneous flame zone, as defined by CH, was found to be narrow and concentrated in an envelope around the stagnation zone. This narrow flame characteristic is consistent with that observed for jet flames. Although the internal structure of the flame envelops have not yet been defined, these results suggest that this bluff-body flame can be modeled by a flame sheet type approach, where the reaction front is captured by the large-scale structures. This should simplify the development of modeling approaches for these flows since molecular mixing and chemical reaction, which occur within the flame sheet, can be separated from the large-scale mixing process.  相似文献   

12.
Digital image analysis of cine pictures of an unconfined rich premixed turbulent flame has been used to determine structural characteristics of the turbulent/non-turbulent interface of the flame. The results, comprising various moments of the interface position, probability density functions and correlation functions, establish that the instantaneous flame-interface position is essentially a Gaussian random variable with a superimposed quasi-periodical component. The latter is ascribable to a pulsation caused by the convection and the stretching of ring vortices present within the flame. To a first approximation, the flame can be considered similar to a three-dimensional axisymmetric turbulent jet, with superimposed ring vortices, in which combustion occurs.  相似文献   

13.
To investigate the mechanisms leading to sustained thermoacoustic oscillations in swirl flames, a gas turbine model combustor was equipped with an optically accessible combustion chamber allowing the application of various laser techniques. The flame investigated was a swirled CH4/air diffusion flame (thermal power 10 kW, global equivalence ratio φ = 0.75) at atmospheric pressure which exhibited self-excited thermoacoustic oscillations at a frequency of 290 Hz. In separate experiments, the flow velocities were measured by laser Doppler velocimetry, the flame structures and heat release rates by planar laser-induced fluorescence of CH and by OH chemiluminescence, and the joint probability density functions of the major species concentrations, mixture fraction, and temperature by laser Raman scattering. All measurements were performed in a phase-locked mode, i.e., triggered with respect to the oscillating pressure level measured by a microphone. The results revealed large periodic variations of all measured quantities and showed that the heat release rate was correlated with the degree of mixing of hot products with unburned fuel/air mixtures before ignition. The thermal expansion of the reacting gases had, in turn, a strong influence on the flow field and induced a periodic motion of the inner and outer recirculation zones. The combination of all results yielded a deeper understanding of the events sustaining the oscillations in the flame under investigation. The results also represent a data base that can be used for the validation and improvement of CFD codes.  相似文献   

14.
 A series of experiments were carried out to determine the heat transfer characteristics of a round, premixed butane/air flame jet impinging upwards on an inclined flat plate, at different angles of incidence. The flame was fixed with an equivalence ratio of 1.0, a Reynolds number of 2500 and a plate-to-nozzle distance of 5d, while the inclination angles chosen for investigation were 57°, 67°, 80° and 90°. It was found that the location of the maximum heat flux point would be shifted away from the geometrical impingement point by reducing the angle of incidence. Decreasing the angle of incidence also enhanced the maximum local heat flux, while reduced the average heat transfer. The present study presented the effect of angle of incidence on the heat transfer characteristics of an impinging butane/air flame jet, which had been rarely reported in previous similar studies. Received on 11 October 2000 The authors wish to thank The Hong Kong Polytechnic University for the financial support of the present study.  相似文献   

15.
非平衡等离子体对甲烷——氧扩散火焰影响的实验研究   总被引:1,自引:0,他引:1  
利用自主设计的等离子喷注器采用介质阻挡放电方式产生非平衡等离子体,首先利用纹影技术、热电偶、单点红外测温等多种诊断方法实验研究了纯氧放电等离子体的电学特性、热效应及气动效应,然后通过可见光和化学自发辐射成像技术获得了火焰形态及特征参数,详细分析了等离子体对甲烷--纯氧扩散火焰形态和释热的影响,并计算了放电功率及费效比. 结果表明, 燃烧导致放电电流显著增大,其中电压幅值与氧气流速对放电电流大小的影响规律正好相反;与空气等离子体相比, 相同流量与电压条件下氧等离子体放电功率较高,但其发光强度明显较弱; 氧等离子体热效应微弱, 对燃烧的影响可以忽略,放电反应中释热过程主要由含氧组分决定;放电产生了具有3个速度分量的诱导射流, 增大了氧射流角,且电压越大越显著.等离子体主要通过气动效应改变了燃料与氧化剂的掺混,使得一定条件下火焰变得更稳定、释热更强.在所研究的范围内等离子体作用的费效比最低仅为2.2%,大流量、小混合比更有利.   相似文献   

16.
This paper presents an experimental study of flow development and structure on a separated jet burner in reacting and non-reacting flows. Effects of deflection jets in an aligned configuration of three round jets are emphasized. The idea is based on the confinement of a central jet of fuel by two side jets of oxygen to improve mixing, to control flame stability, and to reduce pollutant emissions. The fields of mean velocity and fluctuation intensity were measured using Particle Image Velocimetry. The deflection of jets has a considerable effect on the dynamic behavior and on the flame characteristics. Results showed that the deflection of jets favors mixing and accelerates merging and combining of jets to a single one. Measurements in reacting flow showed a high influence of combustion on dynamic fields. Compared to non-reactive case, in combustion, larger radial expansion and higher velocity were observed, particularly, above the stabilization point of the flame.  相似文献   

17.
Generation of hypersonic liquid fuel jets accompanying self-combustion   总被引:2,自引:0,他引:2  
Aerodynamic behavior of pulsed hypersonic light oil jets injected at 2 km/s and 3 km/s is presented. Auto-ignition and combustion of the fuel during the injection process were visualized. The combustion around the disintegrating jet was enhanced by liquid atomization created by the very high injection pressure as well as the interfacial instability of the hypersonic jet. The jets were injected into air at low pressure and also that premixed with helium and air. It was found that the combustion was reduced in both cases despite the higher jet speed and the increased gas pressure. Received 5 November 1998 / Accepted 24 February 1999  相似文献   

18.
不同舱室结构内航空油料的燃爆参数存在差异,为了解和掌握不同结构舱室内航空油料的燃爆危害性,运用计算流体动力学(computational fluid dynamics,CFD)方法对不同结构航空油料舱室内的航空油料蒸汽燃爆问题进行了数值模拟。结果表明:密闭航空油料舱中的航空油料蒸汽预混燃爆时,油舱各处压力分布较均匀,无隔板密闭舱室和含不完全分割隔板密闭舱室内航空油料的最大燃爆压力分别为0.76、0.74 MPa,即舱室内的不完全分割隔板对航空油料燃爆时所产生的最大压力无显著影响;隔板等特殊结构的存在使舱室内部产生了气流漩涡,增大了燃料消耗的速率,导致火焰面传播速度及压力上升速率增大,舱室内各处燃料的质量分数由火焰面决定。  相似文献   

19.
A tailored interface shock tube and an over-tailored interface shock tube were used to measure the thermal energy radiated during diesel-spray combustion of light oil, α-methylnaphthalene and cetane by changing the injection pressure. The ignition delay of methanol and the thermal radiation were also measured. Experiments were performed in a steel shock tube with a 7 m low-pressure section filled with air and a 6 m high-pressure section. Pre-compressed fuel was injected through a throttle nozzle into air behind a reflected shock wave. Monochromatic emissive power and the power emitted across all infrared wavelengths were measured with IR-detectors set along the central axis of the tube. Time-dependent radii where soot particles radiated were also determined, and the results were as follows. For diesel spray combustion with high injection pressures (from 10 to 80 MPa), the thermal radiation energy of light oil per injection increased with injection pressure from 10 to 30 MPa. The energy was about 2% of the heat of combustion of light oil at P inj = about 30 MPa. At injection pressure above 30 MPa the thermal radiation decreased with increasing injection pressure. This profile agreed well with the combustion duration, the flame length, the maximum amount of soot in the flame, the time-integrated soot volume and the time-integrated flame volume. The ignition delay of light oil was observed to decrease monotonically with increasing fuel injection pressure. For diesel spray combustion of methanol, the thermal radiation including that due to the gas phase was 1% of the combustion heat at maximum, and usually lower than 1%. The thermal radiation due to soot was lower than 0.05% of the combustion heat. The ignition delays were larger (about 50%) than those of light oil. However, these differences were within experimental error.
An abridged version of this paper was presented at the 18th Int. Symposium on Shock Waves at Sendai, Japan during July 21 to 26, 1991 and at the 19th Int. Symposium on Shock Waves at Marseille, France during July 26 to 30, 1993.  相似文献   

20.
Transitional jet diffusion flames provide the link between dynamics of laminar and turbulent flames. In this study, instabilities and their interaction with the flow structure are explored in a transitional jet diffusion flame, with focus on isolating buoyancy effects. Experiments are conducted in hydrogen flames with fuel jet Reynolds number of up to 2,200 and average jet velocity of up to 54 m/s. Since the fuel jet is laminar at the injector exit, the transition from laminar to turbulent flame occurs by the hydrodynamic instabilities in the shear layer of fuel jet. The instabilities and the flow structures are visualized and quantified by the rainbow schlieren deflectometry technique coupled with a high-speed imaging system. The schlieren images acquired at 2,000 frames per second allowed exposure time of 23 μs with spatial resolution of 0.4 mm. Results identify a hitherto unknown secondary instability in the flame surface, provide explanation for the observed intermittency in the breakpoint length, show coherent vortical structures downstream of the flame breakpoint, and illustrate gradual breakdown of coherent structures into small-scale random structures in the far field turbulent region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号