首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A grating is copied in monochromatic coherent light. The copy plate is not quite in contact with the grating. Therefore, the fringe contrast on the copy plate will vary across the field. This copy plate can serve as spatial filter for performing first order or higher order differentiations, if the geometry of the copy process was chosen properly.  相似文献   

2.
We present a method for metal coating optical fiber and in-fiber Bragg grating. The technology process which is based on electroless plating and electroplating method is described in detail. The fiber is firstly coated with a thin copper or nickel plate with electroless plating method. Then, a thicker nickel plate is coated on the surface of the conductive layer. Under the optimum conditions, the surfaces of chemical plating and electroplating coatings are all smooth and compact. There is no visible defect found in the cross-section. Using this two-step metallization method, the in-fiber Bragg grating can be well protected and its thermal sensitivity can be enhanced. After the metallization process, the fiber sensor is successfully embedded in the 42CrMo steel by brazing method. Thus a smart metal structure is achieved. The embedding results show that the plating method for metallization protection of in-fiber Bragg grating is effective.  相似文献   

3.
This paper has shown a successful protective coating scheme for powder-sintered Nd–Fe–B permanent magnet using multi-layered electroless nickel (EN) deposition. A low-phosphorus nickel layer is plated with an alkaline EN solution first, followed by a high-phosphorus nickel layer plated with an acidic solution. An additional topcoat by medium-phosphorus nickel on the high-phosphorus coating is also explored. It is shown that the high-phosphorus nickel layer coated in acidic solution provides the best corrosion protection because of its dense amorphous structure. The medium phosphorus topcoat is also dense and is able to provide reasonable corrosion resistance. The low-phosphorus layer itself does not have enough corrosion resistance; its main role is to provide an intermediate coating on the powder-sintered magnet. X-ray diffraction measurement shows that the low-phosphorus coating consists of nano-crystallines, and the high- and the medium-phosphorus coatings are dominated by amorphous structure. Microscopic observation and scratch test on these composite coatings demonstrate good adhesion between the magnet and the coatings. Remanence and coercivity of the plated magnet decrease with the applied coatings, but measured values are still very attractive for practical applications among known hard magnets.  相似文献   

4.
The manufacturing of test diffractive refractive intraocular lenses is illustrated by means of LIGA (deep X-ray LIthography and GAlvanoplastics and polymer forming). Dynamic X-ray lithography used while rotating the substrate versus an X-ray mask fixed in a beam of synchrotron radiation (SR) yields smooth optical 3D surfaces with roughnesses of 10–30 nm rms in polymethylmethacrylate (PMMA) layers. The axisymmetric diffractive refractive profile of a lens is predetermined by the radial angular function of the X-ray mask topology. The quality of the optical surface is reproduced for the nickel master form, which is electroplated onto a gold layer atop the PMMA relief. The optical quality also remains high for replicated lenses synthesized in this manner during silicon polymerization.  相似文献   

5.
The surface ageing of nickel electrodes was studied in the frame of the development of non-invasive biomedical devices, dedicated to the detection of sudomotor dysfunction manifested by an alteration of the ionic balance in human sweat. In this kind of technology, low voltage potentials with variable amplitudes are applied to nickel electrodes, placed on skin regions with a high density of sweat glands, and the electrical responses are measured. The trick is that nickel electrodes play alternately the role of anode and cathode, thus the analysis of the temporal evolution of the physico-chemical properties of nickel is of prime importance to ensure the good performance of the device. Electrochemical measurements coupled to surface chemical characterizations (X-ray photoelectron spectroscopy (XPS), Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS)) were performed on pure Ni samples, immersed in buffered chloride solutions mimicking human sweat. The shapes of voltammograms, recorded in a restricted anodic potential range, show that the nickel surface was gradually passivated as a function of the number of scans. This was confirmed by XPS data, with the formation of a 1 nm thick duplex layer composed by nickel hydroxide (outermost layer) and nickel oxide (inner layer). In a negative extended potential range, though the electrochemical behavior of electrodes was not modified upon cycling the potential, XPS data show that the inner layer was thickening, indicating a surface degradation of the nickel electrode. Below pitting potentials, adsorbed chloride was only hardly detected by XPS, and the surface composition of the nickel samples was similar after treatments in chloride or chloride-free buffered solutions. In a larger potential range enabling to reach the breakdown potential, the highly chemically sensitive ToF-SIMS characterization pointed out that the surface concentration of adsorbed chloride was higher in pits than elsewhere on the surface sample.  相似文献   

6.
《Applied Surface Science》2002,185(3-4):289-297
A low cost, selective electroless metallisation of integrated circuit (IC) copper bond pads with nickel and gold is demonstrated. This metallurgy can function as a barrier layer/bondable material when deposited as a thin layer or as the chip bump for flip chip applications when deposited to greater heights. Four alternative activation steps for selective electroless nickel deposition on bond pad copper are demonstrated. Selective low cost deposition has been achieved with a proprietary electroless plating bath developed at NMRC and three commercial baths on both sputtered copper substrates and electrolessly deposited copper on titanium nitride barrier layer material.  相似文献   

7.
In this study, we present a simple method to improve the electrochromic properties of a nickel oxide thin film. The method involves a three-step process—(a) conducting indium tin oxide (ITO) nano-particles were first sprayed onto a conducting substrate to form a porous nano-structured ITO layer, (b) nickel oxide film was then deposited onto the nano-structured ITO layer by a spray pyrolysis technique, and (c) the substrate, ITO nano-particles layer and nickel oxide film were annealed at high temperature of 300 °C to improve adhesion of these three layers. The microstructure of the resulting electrochromic cell was investigated using scanning electron microscopy. It is evident that the nickel oxide film covers the surface of the ITO nano-particle layer and forms a nano-structured nickel oxide (NSNO) film. The switching time and contrast were characterized by Autolab PGSTAT12 potentiostat and Jasco V-570 spectrophotometer. The results suggest that the transmittance contrast and switching time of NSNO are slightly superior to those of a conventional nickel oxide (CNO) film. However, the cycling durability of NSNO can be much better than that of CNO.  相似文献   

8.
为了实现石英光纤传感器的无胶金属化封装,需要在光纤表面涂敷金属层。先利用化学镀方法在石英光纤表面镀镍层,再利用电镀工艺电镀锡层,从而获得表面光亮、均匀、附着牢固、可焊性好的金属涂敷层。实验中研究了敏化、活化工艺对镀层的影响并提出一种效果较好的敏化活化方法。给出了石英光纤表面化学镀镍的最佳工艺条件。  相似文献   

9.
This paper reports on the results of investigations into the temperature and spectral dependences of the magnetic circular dichroism in Dy1?xNix-Ni bilayer films prepared through thermal sputter deposition of components under ultrahigh vacuum. The distribution of the components over the layer thickness is examined by Auger spectroscopy. The nickel content x in Dy1?xNix layers varies from 0.005 to 0.06. It is shown that, in the temperature range 80–300 K, the contribution made to the magnetic circular dichroism by a Dy1?xNix layer in a bilayer film with a nickel content higher than the threshold value is approximately equal to the magnetic circular dichroism observed in an isolated Dy1?xNix film at temperatures below the temperature of the phase transition to a ferromagnetic state (~100 K). This phenomenon is explained by magnetic ordering in the Dy1?xNix layer of the bilayer film due to the combined effect of two factors, namely, the incorporation of nickel into a dysprosium layer and the presence of a continuous nickel sublayer in the film.  相似文献   

10.
In order to study nickel ion release associated with nickel allergy, Cu-18Ni-20Zn nickel-silver alloy was immersed in artificial sweat and Ringer physiological solution for 30 days. Dissolution of metal ions was measured as a function of time, and the characteristics of the solid surface layer formed after 30 days were studied by SEM/EDS and XPS. The dissolution of nickel prevails over dissolution of copper and zinc. Nickel release in artificial sweat is approximately 10 times higher than in Ringer physiological solution and in both solutions the nickel release exceeds 0.5 μg cm−2 week−1, the threshold above which the allergy is triggered. Evidence of selective nickel dissolution is reported. The composition of the surface layer formed in artificial sweat and in Ringer physiological solution differs in the content of nickel and chlorine. In artificial sweat, the major constituents of the surface layer are dominantly oxides, Cu2O and ZnO, with traces of chlorine. In Ringer physiological solution, the composition of the surface layer changes to a mixture of oxides, chlorides and/or oxychlorides. Two components peaks were detected in the Cl 2p3/2 peak; however, it was not possible to distinguish the exact nature of the chloride compound formed. The mechanism of nickel release is discussed as a function of the composition of the solution.  相似文献   

11.
In high-tech products, there is an increasing demand to integrate glass lenses into complex micro systems. Especially in the lighting industry LEDs and laser diodes used for automotive applications require encapsulated micro lenses. To enable low-cost production, manufacturing of micro lenses on wafer level base using a replication technology is a key technology. This requires accurate forming of thousands of lenses with a diameter of 1–2 mm on a 200 mm wafer compliant with mass production. The article will discuss the technical aspects of a lens manufacturing replication process and the challenges, which need to be solved: choice of an appropriate master for replication, thermally robust interlayer coating, choice of replica glass, bonding and separation procedure. A promising approach for the master substrate material is based on a lens structured high-quality glass wafer with high melting point covered by a coating layer of amorphous silicon or germanium. This layer serves as an interlayer for the glass bonding process. Low pressure chemical vapor deposition and plasma enhanced chemical vapor deposition processes allow a deposition of layer coatings with different hydrogen and doping content influencing their chemical and physical behavior. A time reduced molding process using a float glass enables the formation of high quality lenses while preserving the recyclability of the mother substrate. The challenge is the separation of the replica from the master mold. An overview of chemical methods based on optimized etching of coating layer through small channels will be given and the impact of glass etching on surface roughness is discussed.  相似文献   

12.
There is frequently a need to reduce sound radiation due to resonant flexural motion of stiff machinery panels. This can be achieved by applying squeeze-film damping to the vibrating panel by attaching an auxiliary plate parallel to the surface, thereby trapping a thin layer of air. Relative vibration of the plates pumps this air at high velocities, resulting in energy loss due to the air viscosity. In this study the damping below the critical frequency of the “thick plate” with an “attached plate” and air layer has been investigated by using an impedance approach. This model is incorporated into a two element Statistical Energy Analysis (SEA) model to predict the damping well above the critical frequency of the thick plate. The agreement between the predicted and measured results is remarkably good. Below the critical frequency the damping is pumping controlled, while above critical the plate couplings are the controlling factor.  相似文献   

13.
Poor adhesion of nickel surface limits its further application in the aerospace field. In this study, plasma modification was conducted on the surface of the nickel plate pretreated by sandblasting, and then ultrasonic vibration was applied during the adhesively bonding process of the CFRP(Carbon fibre-reinforced polymer)/Ni joints. The bonding strength of the joints was increased by 65%. The adherend surface and the bonding interface were analyzed from microstructure, element distribution and chemical bonding to study the strengthening mechanism. By the sandblasting, irregular pits were formed on the nickel surface, effectively increasing the surface roughness. The plasma modification could introduce active functional groups including hydroxyl, amino and carbonyl on the nickel surface, which improved the surface wettability macroscopically. However, at a microscopic level, the adhesive with high viscosity and poor fluidity did not form a compact interface with the nickel. The ultrasonic application could promote the filling of the adhesive in irregular micro-scale pits on the surface, thereby strengthening the mechanical anchoring effect. Furthermore, the ultrasonic application produced dynamic impingement at the interface, enhancing the contact between the adhesive and the nickel plate. The adhesive molecules could fully collide and react with the active functional groups introduced on the nickel surface to form more chemical bonds, thus effectively improving the bonding strength of the CFRP/Ni joints.  相似文献   

14.
This paper presents an analytical solution for the vibration and acoustic responses of a finite stiffened plate that is covered with decoupling layers and subjected to external excitation. The theory of elasticity is used for the decoupling layer, and the stiffened plate is modeled by the plate theory and Euler–Bernoulli beam equation. Equations are constructed by the boundary conditions at the plate/coating and coating/fluid interfaces. The problem can be solved by the proposed method in this paper. Test verification shows that a good correlation exists between theoretical and test results. Thus, the theoretical study in this paper is correct. Numerical results show that shear waves insignificantly affect the structural vibration level difference (VR) under low frequencies. The noise reduction of the stiffened plate covered with decoupling layers is greatly influenced by the decoupling layer loss factor. A failure region of the vibration level difference is present in the low frequency band of the decoupling layer. Furthermore, the thickness of the decoupling layer significantly affects noise reduction.  相似文献   

15.
Behavior of a poro-elastic material bonded onto a vibrating plate is investigated in the low-frequency range. From the analysis of dissipation mechanisms, a model accounting for damping added by the porous layer on the plate is derived. This analysis is based on a 3-D finite element formulation including poro-elastic elements based on Biot displacement theory. First, dissipated powers related to thermal, viscous and viscoelastic dissipation are explicited. Then a generic configuration (simply-supported aluminium plate with a bonded porous layer and mechanical excitation) is studied. Thermal dissipation is found negligible. Viscous dissipation can be optimized as a function of airflow resistivity. It can be the major phenomenon within soft materials, but for most foams viscoelastic dissipation is dominant. Consequently an equivalent plate model is proposed. It includes shear in the porous layer and only viscoelasticity of the skeleton. Excellent agreement is found with the full numerical model.  相似文献   

16.
Interferometry for measuring the shape of large aspherical surfaces is reported. The interference fringe pattern between the parallel reference beam and the reconstructed wavefront from the master zone plate which is drawn by an electron-beam drawing machine is recorded on a hologram plate with off-axis optical arrangement. The hologram plate used as the standard element is reconstructed by the conjugate beam in a modified Twyman-Green interferometer. Insufficient parallelism of commercial hologram plates can be compensated by this method. It is also easy to make replicas. Some experimental results are also presented.  相似文献   

17.
DC electric-field mediated nanocrystallization of thermally evaporated silicon thin films with nickel as seed/cap layer has been attempted in complete absence of any external heat input. When 60 nm Si thin film coated onto 5 nm Ni thin film was treated by a direct current (DC) electric field (up to 3.3 kV/cm up to 5 minutes) after the deposition, amorphous silicon thin films became nanocrystalline (6–10 nm). Silicon nanograins (average diameter 90 nm) grow to larger sizes (average diameter 240 nm) with sharpening of grain size distribution. Huge grain growth (4-fold increase) has been observed when nickel was used as cap layer (5 nm Ni/60 nm Si). XRD data show the signature of nickel silicide formation on the surface in nickel cap layer case. Field treatment has changed the optical absorption edge (shifts left in nm units) and the refractive index of silicon thin film when nickel was used as under layer, and an almost negligible effect on the optical properties has been observed when nickel was used as cap layer.  相似文献   

18.
This paper presents a closed expression of the layered-plate factor used to calculate the coil eddy-current impedance over the multi-layer plate conductor. By using this expression, the general series of eddy-current impedance can be written directly without solving the undetermined constant equations. The series expression is easy to use for theoretical analysis and programming. Experimental results show that calculated values and measured values are in agreement. As an application, when the bottom layer of the layered plate is a non-ferromagnetic thin layer conductor and the product of the thickness and conductivity of the layer remains unchanged, using the layered-plate factor expression proposed in this paper, it can be theoretically predicted that the eddy-current impedance curves corresponding to different thin layer thickness values will coincide.  相似文献   

19.
Standing shear waves in a plane-parallel rubberlike layer fixed without slippage between two rigid plates with finite masses are investigated. The lower plate, which underlies the layer, oscillates in the direction parallel to its surface under an external harmonic force, whereas the upper plate freely overlies the layer. It is shown both theoretically and experimentally that such a system exhibits resonances at frequencies the values of which depend on the mass of the free plate and the shear modulus of the layer. The shapes of the resonance curves are calculated and measured for different values of parameters of the layer and different masses of the upper plate. From the measured resonance curves, it is possible to determine the dynamic shear modulus and the shear viscosity of the rubberlike material.  相似文献   

20.
Acoustic methods of land mine detection rely on the vibrations of the top plate of the mine in response to sound. For granular soil (e.g., sand), the particle size is expected to influence the mine response. This hypothesis is studied experimentally using a plate loaded with dry sand of various sizes from hundreds of microns to a few millimeters. For low values of sand mass, the plate resonance decreases with added mass and eventually reaches a minimum without particle size dependence. After the minimum, a frequency increase is observed with additional mass that includes a particle-size effect. Analytical nondissipative continuum models for granular media capture the observed particle-size dependence qualitatively but not quantitatively. In addition, a continuum-based finite element model (FEM) of a two-layer plate is used, with the sand layer replaced by an equivalent elastic layer for evaluation of the effective properties of the layer. Given a thickness of sand layer and corresponding experimental resonance, an inverse FEM problem is solved iteratively to give the effective Young's modulus and bending stiffness that matches the experimental frequency. It is shown that a continuum elastic model must employ a thickness-dependent elastic modulus in order to match experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号