首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates the optimization of double-pulse collinear femtosecond laser-induced breakdown spectroscopy (FLIBS) for silicon. Double-pulse FLIBS signal enhancements were observed over an extended range of sample focal plane position compared to single pulse FLIBS. The FLIBS signal intensity was studied as a function of pulse energy, inter-pulse delay (0 ps‑80 ps) and sample position. Correlation between crater volume and signal intensity was measured over a limited range of the sample focal plane position. It was found that double-pulse FLIBS is superior to single pulse for certain focal plane positions.  相似文献   

2.
A quantitative comparison of the performance of four different laser-induced breakdown spectroscopy detection systems is presented. The systems studied are an intensified photodiode array coupled with a Czerny–Turner spectrometer, an intensified CCD coupled with a Czerny–Turner spectrometer, an intensified CCD coupled to an Echelle spectrometer, and a prototype multichannel compact CCD spectrometer system. A simple theory of LIBS detection systems is introduced, and used to define noise-equivalent spectral radiance and noise-equivalent integrated spectral radiance for spectral detectors. A detailed characterization of cathode noise sources in the intensified systems is presented.  相似文献   

3.
This paper reports the results of a measurement campaign performed at the National Museum of Magna Grecia in Reggio Calabria (Italy). Portable X-Ray Fluorescence (XRF) and Laser-Induced Breakdown Spectroscopy (LIBS) instrumentation allowed in situ analysis of several bronze pieces belonging to the group of the so-called Porticello Bronzes. The find occurred at sea, off the village of Porticello (Reggio Calabria) in 1969 and consists of a number of fragments, including a bearded head, pertaining to at least two statues. The use of X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy techniques allowed for a classification of the fragments according to their elemental composition. The fragments appear to belong to at least two different statues; although, in general, the compositional classification agrees well with the stylistic analysis of the fragments, significant improvements with respect to previous achievements emerge from the joint results of the two techniques used.  相似文献   

4.
As applications for laser-induced breakdown spectroscopy (LIBS) become more varied with a greater number of field and industrial LIBS systems developed and as the technique evolves to be more quantitative that qualitative, there is a more significant need for LIBS systems capable of analysis with the use of a single laser shot. In single-shot LIBS, a single laser pulse is used to form a single plasma for spectral analysis. In typical LIBS measurements, multiple laser pulses are formed and collected and an ensemble-averaged method is applied to the spectra. For some applications there is a need for rapid chemical analysis and/or non-destructive measurements; therefore, LIBS is performed using a single laser shot. This article reviews in brief several applications that demonstrate the applicability and need for single-shot LIBS.  相似文献   

5.
The influence of laser pulse duration on laser-induced breakdown spectroscopy (LIBS) calibration curves is investigated in the present work. Two Nd:YAG lasers providing pulses of 35 ps and 5 ns, respectively, both operating at 1064 nm, have been used to create plasmas on aluminium, manganese, iron, and silicon targets and on prepared stoichiometric samples of these metals in a matrix. The time-resolved, space-averaged plasma temperatures have been deduced using Boltzmann plots, while the electron number density has been determined from the broadening of spectral lines. The effect of laser pulse duration on the plasma characteristics is discussed, and comparisons are made with previously reported data measured under similar experimental conditions. The optimum experimental conditions (i.e., time delay, gate width, laser energy) have been determined for reliable use of LIBS for quantitative analysis for both pulse durations. For each of the metals of interest, calibration curves have been constructed for concentrations ranging up to 2%.  相似文献   

6.
Silicon, zirconium and aluminum sol–gels were investigated as suitable starting materials for tunable matrix calibration standards for laser-induced breakdown spectroscopy. A fast and simple preparation method was developed, using aluminum i-propoxide as the precursor in the sol–gel synthesis, which allows one to quickly prepare solid calibration standards offering very homogenous analyte distribution in the matrix, low optical spectral background, as well as reproducible behavior towards laser ablation and vaporization. The surface of the calibration targets and the morphology of the ablation craters were examined by optical and scanning electron microscopy, and the material ejection process was observed by shadowgraph imaging. Low μg/g detection limits and 4–15% relative standard deviation were measured by laser induced breakdown spectroscopy for Pb, Cr and Be used as internal standards.  相似文献   

7.
We have performed spectroscopic analysis of the plasma generated by Nd:YAG laser irradiation of flesh and skin of fresh potatoes. From the spectra recorded with an Echelle spectrometer 11 minor elements have been identified. Their relative concentrations were estimated by comparing the measured spectra to the spectral radiance computed for a plasma in local thermal equilibrium. According the moderate plasma temperature of about 6500 K at the time of spectroscopic observation, the electrons are essentially generated by the ionization of the minor metal atoms, making plasma modeling possible although the organic elements may be out of equilibrium. Among the spectral lines selected for the analysis, the Na I 588.99 and 589.59 nm doublet was found to be partially self-absorbed allowing us to estimate the number density of sodium atoms. The value was found to agree with the number density predicted by the plasma model. As a result, the relative concentrations of the detected minor elements have been estimated for both the flesh and skin of the potatoes. Among these, aluminum and silicon were found to have relatively large mass fractions in the potato skin whereas their presence was not detected in the flesh. The present study shows that laser-induced breakdown spectroscopy is a promising tool to measure the elemental composition of fresh vegetables without any sample preparation.  相似文献   

8.
Laser-induced breakdown spectroscopy (LIBS) has been applied to analyze trace elements contained in fresh vegetables. A quadrupled Nd:YAG laser is used in the experiments for ablation. Analyzed samples come from local markets and represent frequently consumed vegetables. For a typical root vegetable, such as potato, spectral analysis of the plasma emission reveals more than 400 lines emitted by 27 elements and 2 molecules, C2 and CN. Among these species, one can find trace as well as ultra-trace elements. A space-resolved analysis of several trace elements with strong emissions is then applied to typical root, stem and fruit vegetables. The results from this study demonstrate the potential of an interesting tool for botanical and agricultural studies as well for food quality/safety and environment pollution assessment and control.  相似文献   

9.
Glass samples of four types commonly encountered in forensic examinations have been analyzed by laser-induced breakdown spectroscopy (LIBS) for the purpose of discriminating between samples originating from different sources. Some of the glass sets were also examined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Refractive index (RI) measurements were also made on all glass samples and the refractive index data was combined with the LIBS and with the LA-ICP-MS data to enhance discrimination. The glass types examined included float glass taken from front and side automobile windows (examined on the non-float side), automobile headlamp glass, automobile side-mirror glass and brown beverage container glass. The largest overall discrimination was obtained by employing RI data in combination with LA-ICP-MS (98.8% discrimination of 666 pairwise comparisons at 95% confidence), while LIBS in combination with RI provided a somewhat lower discrimination (87.2% discrimination of 1122 pairwise comparisons at 95% confidence). Samples of side-mirror glass were less discriminated by LIBS due to a larger variance in emission intensities, while discrimination of side-mirror glass by LA-ICP-MS remained high.  相似文献   

10.
This paper presents results obtained in a study of collinear geometry double pulse femtosecond LIBS analysis of solids in ambient environment. LIBS signal enhancement of 3–10 fold, accompanied by significant improvement of signal reproducibility, in comparison with the single pulse case, has been found in different samples such as brass, iron, silicon, barium sulfate and aluminum when an optimum temporal separation between the two ablating pulses is used. The influence of the delay between pulses in the LIBS signal intensity was investigated and two intervals of interaction were established. A first transient regime from 0 to 50 ps, in which the LIBS signal increases until reaching a maximum, and a second regime that ranges from 50 to 1000 ps (maximum inter-pulse delay investigated) in which the signal enhancement remains constant. Emissions from both ionized and neutral atoms show the same pattern of enhancement with a clear tendency of lines arising from higher energy emissive states to exhibit higher enhancement factors.  相似文献   

11.
Depth-profiling of a thermal barrier coating (TBC) system was carried out using femtosecond laser-induced breakdown spectroscopy (fs-LIBS). The TBC system consisted of an outer 7% yttria stabilized zirconia (7YSZ) ceramic coating and an inner Pt-modified bond coat on a Ni-based superalloy single crystal substrate. In the absence of the ceramic layer, it was possible to qualitatively differentiate between the bond coat and the substrate, and also between the two layers of the bond coat. The spatial location of the interface between the two bond coat layers could also be obtained accurately from the spectral profile of W. In presence of the ceramic coating, it was also possible to easily and accurately determine the ceramic/bond coat interface from the spectral profile of Al. Potential use of fs-LIBS in combination with fs laser machining to produce superior quality cooling holes on thermal barrier coated superalloy components is discussed.  相似文献   

12.
Laser-induced breakdown spectroscopy (LIBS) is an on-line, real-time technology that can produce immediate information about the elemental contents of tissue samples. We have previously shown that LIBS may be used to distinguish cancerous from non-cancerous tissue. In this work, we study LIBS spectra produced from chicken brain, lung, spleen, liver, kidney and skeletal muscle. Different data processing techniques were used to study if the information contained in these LIBS spectra is able to differentiate between different types of tissue samples and then identify unknown tissues. We have demonstrated a clear distinguishing between each of the known tissue types with only 21 selected analyte lines from each observed LIBS spectrum. We found that in order to produce an analytical model to work well with new sample we need to have representative training data to cover a wide range of spectral variation due to experimental or environmental changes.  相似文献   

13.
Laser-induced breakdown spectroscopy (LIBS) in the vacuum ultraviolet range (VUV, λ < 200 nm) is employed for the detection of trace elements in polyethylene (PE) that are difficult to detect in the UV/VIS range. For effective laser ablation of PE, we use a F2 laser (wavelength λ = 157 nm) with a laser pulse length of 20 ns, a pulse energy up to 50 mJ, and pulse repetition rate of 10 Hz. The optical radiation of the laser-induced plasma is measured by a VUV spectrometer with detection range down to λ = 115 nm. A gated photon-counting system is used to acquire time-resolved spectra. From LIBS measurements of certified polymer reference materials, we obtained a limit of detection (LOD) of 50 µg/g for sulphur and 215 µg/g for zinc, respectively.The VUV LIBS spectra of PE are dominated by strong emission lines of neutral and ionized carbon atoms. From time-resolved measurements of the carbon line intensities, we determine the temporal evolution of the electronic plasma temperature, Te. For this, we use Saha–Boltzmann plots with the electron density in the plasma, Ne, derived from the broadening of the hydrogen H-α line. With the parameters Te and Ne, we calculate the intensity ratio of the atomic sulphur and carbon lines at 180.7 nm and at 175.2 nm, respectively. The calculated intensity ratios are in good agreement with the experimentally measured results.  相似文献   

14.
The enhancement of emission intensity resulting from the interaction between two laser-induced plasmas on two orthogonal targets was investigated using double pulse laser-induced breakdown spectroscopy (LIBS) at 0.7 Pa, by means of time-resolved spectroscopy and fast photography. The results showed that the interaction between both plasmas improved carbon emission intensity in comparison to a single laser-induced plasma. For all the carbon lines of interest 477.2 nm (CI), 426.7 nm (CII), and 473.4 nm (C2 Swan band head), the intensity enhancement showed a maximum at a delay between lasers in the range from 2 to 5 μs; moreover it increased with the fluence of the first laser. On the other hand, in the case of C2 the intensity enhancement reached a maximum at 5 mm from the target; however it decreased with increasing fluence of the second laser. The largest intensity enhancement found was twofold for atomic species and sixfold for molecular species.  相似文献   

15.
Ultraviolet pulses (266 nm) delivered by a quadrupled Nd:YAG laser were used to analyze organic samples with laser-induced breakdown spectroscopy (LIBS). We present characteristics of the spectra obtained from organic samples with special attentions on the emissions of organic elements, O and N, and molecular bonds CN. The choice of these atomic or molecular species is justified on one hand, by the importance of these species to specify organic or biological materials; and on the other hand by the possible interferences with ambient air when laser ablation takes place in the atmosphere. Time-resolved LIBS was used to determine the time-evolution of line intensity emitted from these species. We demonstrate different kinetic behaviors corresponding to different origins of emitters: native atomic or molecular species directly vaporized from the sample or those generated through dissociation or recombination due to interaction between laser-induced plasma and air molecules. Our results show the ability of time-resolved UV-LIBS for detection and identification of native atomic or molecular species from an organic sample.  相似文献   

16.
The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO2, Al2O3, Fe2O3, CaO…) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004 [1]). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002 [2]) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003[3]).In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis “on tape” was performed in order to establish the experimental conditions for the future “online analysis”.  相似文献   

17.
An all-fiber-coupled laser-induced breakdown spectroscopy (LIBS) sensor device is developed. A passively Q-switched Cr4+Nd3+:YAG microchip laser is amplified within an Yb fiber amplifier, thus generating high power laser pulses (pulse energy Ep = 0.8 mJ, wavelength λ = 1064 nm, repetition rate frep. = 5 kHz, pulse duration tp = 1.2 ns). A passive (LMA) optical fiber is spliced to the active fiber of an Yb fiber amplifier for direct guiding of high power laser pulses to the sensor tip. In front of the sensor a plasma is generated on the surface to be analyzed. The plasma emission is collected by a set of optical fibers also integrated into the sensor tip. The spectrally resolved LIBS spectra are processed by application of principal component analysis (PCA) and analyzed together with the time-resolved spectra with neural networks. Such procedure allows accurate analysis of samples by LIBS even for materials with similar atomic composition. The system has been tested successfully during field measurements at the German Armed Forces test facility at Oberjettenberg.

The LIBS sensor is not restricted to anti-personnel mine detection but has also the potential to be suitable for analysis of bulk explosives and surface contaminations with explosives, e.g. for the detection of improvised explosive devices (IEDs).  相似文献   


18.
Samples taken from the liquid slag layer in a vacuum degasser station of a steel works are analyzed after solidification by laser-induced breakdown spectroscopy (LIBS) without any further sample preparation. The mass fractions of the major components of the vacuum slags are in the range of 50–60% for CaO, 0.5–12% for SiO2 and 20–40% for Al2O3. The species are distributed heterogeneously in the solid samples having diameters of 35 mm. Furthermore the color and structure of the samples is varying significantly. A fast spatial averaging of representative sample areas is realized by spatial laser beam shaping. Multivariate calibration and its validation is carried out with calibration and validation sets of production samples which are analyzed by X-ray fluorescence measurements or as borate beads for reference. The laser-induced breakdown spectroscopy instrument is installed in the steel works at a distance of about 10 m from the vacuum degasser. The laser-induced breakdown spectroscopy analysis runs automatically after the sample placement and it takes 80 s including data transfer to the host computer of the steel works. Operational tests are carried out to demonstrate the feasibility of a fast slag analysis in the harsh environment of the vacuum degasser plant.  相似文献   

19.
We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.  相似文献   

20.
A quantitative analysis of chromium in soil samples is presented. Different emission lines related to chromium are studied in order to select the best one for quantitative features. Important matrix effects are demonstrated from one soil to the other, preventing any prediction of concentration in different soils on the basis of a univariate calibration curve. Finally, a classification of the LIBS data based on a series of Principal Component Analyses (PCA) is applied to a reduced dataset of selected spectral lines related to the major chemical elements in the soils. LIBS data of heterogeneous soils appear to be widely dispersed, which leads to a reconsideration of the sampling step in the analysis process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号