首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel laser ablation and ionization time-of-flight mass spectrometer has been used for direct elemental analysis of alloys. The system was incorporated with an ion guide cooling cell to reduce the kinetic energy distribution for the purpose of better resolution. Parametric studies have been conducted on the system with respect to the buffer gas pressure and the distance from sample to the nozzle to obtain the maximal signal intensities. In order to obtain satisfactory relative sensitivity coefficients (RSC) for different elements, the influence of the laser irradiance, nozzle voltage, rf frequency and voltage of the hexapole were also investigated. Under the optimized conditions, the RSC of different elements were available for direct semi-quantitative analysis. The mass resolving power (FWHM) of the spectrometer was approximately 7000 (m/Δm) and the limit of detection (LOD) was 10− 6 g/g.  相似文献   

2.
New developments in inductively coupled plasma mass spectrometry (ICP-MS) and laser desorption-time-of-flight mass spectrometry (LD-TOF-MS) for inorganic analysis are described. These include fundamental studies of the ion extraction, process in ICP-MS, development of a highly efficient nebulizer, isotope tracer studies, measurement of elemental speciation by liquid chromatography with ICP-MS detection and characterization of the structures of solids by ion association. The possibilities of determining inorganic species in solutions by electrospray MS are also described.  相似文献   

3.
This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of “coffee rings” in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the “coffee-ring effect” in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a “hidden coffee-ring effect” where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation.  相似文献   

4.
For this study, multiphoton ionization/mass spectrometry using an ultraviolet (UV) femtosecond laser was employed for the trace analysis of organic compounds. Some of the molecules, such as dioxins, contain several chlorine atoms and have short excited-state lifetimes due to a "heavy atom" effect. A UV femtosecond laser is, then, useful for efficient resonance excitation and subsequent ionization. A technique of multiphoton ionization using an extremely short laser pulse (e.g., <10 fs), referred to as "impulsive ionization," may have a potential for use in fragmentation-free ionization, thus providing information on molecular weight in mass spectrometry.  相似文献   

5.
Isotope dilution mass spectrometry currently stands out as the method providing results with unchallenged precision and accuracy in elemental speciation. However, recent history of isotope dilution mass spectrometry has shown that the extent to which this primary ratio measurement method can deliver accurate results is still subject of active research. In this review, we will summarize the fundamental prerequisites behind isotope dilution mass spectrometry and discuss their practical limits of validity and effects on the accuracy of the obtained results. This review is not to be viewed as a critique of isotope dilution; rather its purpose is to highlight the lesser studied aspects that will ensure and elevate current supremacy of the results obtained from this method.  相似文献   

6.
Matrix-assisted laser desorption ionization (MALDI) time of flight mass spectrometry was used to identify shrimp at the species level using commercial mass spectral fingerprint matching software (Bruker Biotyper). In the first step, a mass spectrum reference database was constructed from the analysis of six commercially important shrimp species: Litopenaeus setiferus, Farfantepenaeus aztecus, Sicyonia brevirostris, Pleoticus robustus, Pandalopsis dispar and Pandalus platyceros. This step required a desalting procedure for optimum performance. In the second step, the reference database was tested using 74 unknown shrimp samples from these six species. Correct identification was achieved for 72 of 74 samples (97%): 72 samples were identified at the species level and 2 samples were identified at the genus level using the manufacturer's log score specifications. The MALDI fingerprinting method for the identification of shrimp species was found to be reproducible and accurate with rapid analysis.  相似文献   

7.
Three different approaches to laser ionization mass spectrometric analysis of aromatic compounds in water samples are described and their performances are compared. Whereas the first two methods are based on direct laser desorption and subsequent laser ionization of either frozen or adsorbed samples in a time-of-flight mass analyzer, the third performs laser ionization in a quadrupole ion-trap into which the sample is transferred from a GC injector via a short piece of capillary tubing. For the laser-desorption method a detection limit in the 100 µg L–1 range was determined for fluorene in frozen samples. The easier to handle analysis of adsorbed samples yielded sensitivities which were lower by about two orders of magnitude. As both direct techniques do not reach the sensitivity required for ultra trace analysis in water a preconcentration step in form of solid-phase microextraction was added before measurement using the laser ionization quadrupole ion-trap mass spectrometer. Sensitivity in the desired ng L–1 range was easily achieved.  相似文献   

8.
The application of resonance-enhanced multiphoton ionization (REMPI) spectroscopy for the ultrasensitive detection of molecules originating from laser desorption experiments performed on a variety of substrates is reviewed. Laser-induced desorption from surfaces is capable of producing intact gas-phase molecules, even from polar, non-volatile, high-molecular-weight and thermally labile substances. REMPI is a highly efficient and optically selective ionization method, which, coupled with laser desorption allows the direct chemical analysis of complex mixtures, without the need for previous sample purification and separation steps. The use of REMPI spectroscopy is discussed in two contexts: (1) for the direct chemical analysis of complex mixtures, e.g., environmental samples, by laser desorption/laser postionization mass spectrometry and (2) for measurements of internal state distribution of molecules laser-desorbed from sub-monolayers surface films to gain insight into the laser desorption mechanism.Presented at the 13th International Symposium on Microchemical Techniques (ISM), held in Montreux, Switzerland, May 16–20,1994  相似文献   

9.
Biochemical processes rely on elaborate networks containing thousands of compounds participating in thousands of reaction. Rapid turnover of diverse metabolites and lipids in an organism is an essential part of homeostasis. It affects energy production and storage, two important processes utilized in bioengineering. Conventional approaches to simultaneously quantify a large number of turnover rates in biological systems are currently not feasible. Here we show that pulse-chase analysis followed by laser ablation electrospray ionization mass spectrometry (LAESI-MS) enable the simultaneous and rapid determination of metabolic turnover rates. The incorporation of ion mobility separation (IMS) allowed an additional dimension of analysis, i.e., the detection and identification of isotopologs based on their collision cross sections. We demonstrated these capabilities by determining metabolite, lipid, and peptide turnover in the photosynthetic green algae, Chlamydomonas reinhardtii, in the presence of 15N-labeled ammonium chloride as the main nitrogen source. Following the reversal of isotope patterns in the chase phase by LAESI-IMS-MS revealed the turnover rates and half-lives for biochemical species with a wide range of natural concentrations, e.g., chlorophyll metabolites, lipids, and peptides. For example, the half-lives of lyso-DGTS(16:0) and DGTS(18:3/16:0), t1/2 = 43.6 ± 4.5 h and 47.6 ± 2.2 h, respectively, provided insight into lipid synthesis and degradation in this organism. Within the same experiment, half-lives for chlorophyll a, t1/2 = 24.1 ± 2.2 h, and a 2.8 kDa peptide, t1/2 = 10.4 ± 3.6 h, were also determined.  相似文献   

10.
A small high‐irradiance laser ionization time‐of‐flight mass spectrometer (LI‐TOFMS) with orthogonal sample introduction was described. High irradiance of 6 × 1010 W/cm2 at 532 nm from a Nd : YAG laser was applied in the experiment to get a high ionization degree in plasma and to dissociate the interferential polyatomic ions. Meanwhile, the interferential multiply charged ions resulted by high‐irradiance were nearly eliminated in the spectrum by utilizing helium as the buffer gas in the ion source due to three‐body recombination, which resulted in a relatively clean background. Improved signal stability was obtained by automated step moving of the sample stage in short time intervals. By using two sets of Einzel lens in transport system, nearly uniform relative sensitivity coefficients (RSCs) were achieved for most of metal elements including light ions which were detected in extremely low sensitivity in previous hexapole transportation instrument. The resolving power reaches 2200, and the detection limits (DLs) are 10?6 g/g for metal elements in the steel standard. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This study demonstrates the first application of field-induced wooden-tip electrospray ionization (ESI) mass spectrometry (MS) for high-throughput analysis of herbal medicines. By application of an opposite and sample-contactless high voltage on the MS inlet rather than wooden tips, a high-throughput analysis device is easily set up, and a relatively fast analysis speed of 6 s per sample was successfully achieved. In addition, fast polarity switching between positive and negative ion detection mode is readily accomplished, which provides more complete chemical information for quality assessment and control of herbal medicines. By using the proposed method, various active ingredients present in different herbal medicines were rapidly detected, and the obtained mass spectra were served as the samples' fingerprints for tracing the origins, establishing the authenticity, and assessing the quality consistency and stability of herbal medicines. Our experimental results demonstrated that field-induced wooden-tip ESI-MS is a desirable method for high-throughput analysis of herbal medicines, with promising prospects for rapidly differentiating the origin, determining the authenticity, and assessing the overall quality of pharmaceuticals.  相似文献   

12.
As one of the most prevalent and complex post-translational modifications in biological systems, proteins glycosylation has drawn considerable attention in recent decades. Dissociation of the carbohydrates from glycoproteins may be the prerequisite step of glycomics experiments, which commonly performed by specific proteolysis. In this study, an alternative strategy was reported with nonspecific proteolysis in coupling with co-derivatization of TMPP-Ac and methylamidation for glycan moieties analysis by MALDI-MS. With the co-derivatization, a permanent positive charge was introduced to the Asn-glycans and the carboxylic groups were neutralized by methylamidation simultaneously. As a result, approximately 20 and 50-fold enhancement in the detection sensitivity was achieved for asialo-Asn and disialo-Asn respectively in comparison to their native counterparts. Ultimately, this developed strategy was successfully validated using three model glycoproteins, including ribonuclease B, ovalbumin and transferrin.  相似文献   

13.
Real-time analysis of gases for volatile organic compounds or elements is required for a number of applications. Direct sampling-mass spectrometry (DS-MS) is one approach to solve these analytical problems. This article reviews various instrumental configurations and applications of DS-MS. Inlet systems employed for DS-MS include membranes, microtrap interfaces, atmospheric sampling glow discharge ionization, atmospheric pressure ionization, microwave plasma ionization, and capillary restrictors. The use of laser-based ionization methods for DS-MS is described, including resonance-enhanced multiphoton ionization and single photon ionization.  相似文献   

14.
Conventional electrospray ionization mass spectrometry (ESI-MS) is widely used for analysis of solution samples. The development of solid-substrate ESI-MS allows direct ionization analysis of bulky solid samples. In this study, we developed pipette-tip ESI-MS, a technique that combines pipette tips with syringe and syringe pump, for direct analysis of herbal powders, another common form of samples. We demonstrated that various herbal powder samples, including herbal medicines and food samples, could be readily online extracted and analyzed using this technique. Various powder samples, such as Rhizoma coptidis, lotus plumule, great burdock achene, black pepper, Panax ginseng, roasted coffee beans, Fructus Schisandrae Chinensis and Fructus Schisandrae Sphenantherae, were analyzed using pipette-tip ESI-MS and quality mass spectra with stable and durable signals could be obtained. Both positive and negative ion modes were attempted and various compounds including amino acids, oligosaccharides, glycosides, alkaloids, organic acids, ginosensides, flavonoids and lignans could be detected. Principal component analysis (PCA) based on the acquired mass spectra allowed rapid differentiation of closely related herbal species.  相似文献   

15.
Current and emerging capabilities of plasma-source mass spectrometry (PS-MS) as it is employed for elemental speciation analysis are reviewed. Fundamental concepts and their advantageous aspects, experimental conditions, and analytical performance are described and illustrated by recent examples from the literature. Novel instrumentation, techniques, and strategies for inductively-coupled plasma mass spectrometry (ICP-MS), microwave-induced plasma (MIP) mass spectrometry, glow-discharge (GD) mass spectrometry, and electrospray ionization (ESI), among others, are described. The use of ionization sources that provide tunable ionization, others that can be modulated between different sets of operating conditions, and others used in parallel is also examined.  相似文献   

16.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an emerging technique for the determination of the molecular weight of biomolecules and their non-covalent complexes without fragmentation. One problem with this technique is the use of excess amounts of matrices, which may produce intense fragment ions and/or clusters at low mass ranges between 1 and 800 Da. These fragments lead to interference, especially concerning the signals of small target molecules. Here, a simple, reusable, and quite inexpensive approach was demonstrated to improve the effectiveness of laser desorption/ionization mass spectrometry (LDI-MS) analysis, especially for small molecules, without using matrix molecules. In this study, substrates with controllable morphologies and thicknesses were developed based on the self-assembly of silane molecules on silicon surfaces using N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA) and octadecyltrichlorosilane (OTS) molecules. Prepared substrates with nano-overlayers were successfully used in the analysis of different types of small target molecules, namely acrivastine, l-histidine, l-valine, l-phenylalanine, l-arginine, l-methionine and angiotensin I. Our substrates exhibited clear peaks almost without fragmentation for all target molecules, suggesting that these surfaces provide a number of important advantages for LDI-MS analysis, such as ease of preparation, costs, reusability, robustness, easy handling and preventing fragmentation.  相似文献   

17.
Laser desorption ionization (LDI) mass spectra have been obtained for the photolysis products of tri-9-anthrylborane (TAB) in the solvents toluene, cyclohexene, and tetrahydrofuran; and for the solid triarylboranes: TAB, trimesitylborane (TMB), and tri-(2,6-dimethylphenyl)borane (TXyB). The major single solution photolysis product of TAB is 9,9′-dianthryl. Other products are rationalized in terms of an anthrylborylene intermediate (AnthB:). LDI mass spectrometry of the triarylboranes yields molecular ions in good abundance, providing a simple and selective method of characterization. Fragmentation patterns in some cases are interpreted in terms of photochemical reactions prior to ionization.  相似文献   

18.
Resonance Ionization Mass Spectrometry (RIMS) is a sensitive and selective method for ultratrace analysis of long-lived radioisotopes and isotope ratio measurements. It provides extremely high isobaric suppression and good overall efficiency. The experimental limits of detection are as low as 106 atoms per sample and isotopic selectivities of 5×1012 have been obtained. The widespread potential of RIMS, using different experimental arrangements, is demonstrated for the determination of the radiotoxic isotopes Pu-238 to Pu-244 and Sr-89/Sr-90 in various environmental samples as well as for Ca-41 in nuclear reactor components and biomedical samples.  相似文献   

19.
Ambient desorption ionization mass spectrometry   总被引:1,自引:0,他引:1  
Ambient desorption ionization mass spectrometry (MS) allows for the direct analysis of ordinary objects in the open atmosphere of the laboratory or in their natural environment. Analyte desorption usually accompanies the ionization step and these processes are often concerted, multi-step processes. Ambient desorption ionization methods typically require little or no sample preparation, offer a much simplified work flow and deliver unprecedented ease of use to MS analyses.

Since the introduction of desorption electrospray ionization (DESI [Z. Takats, J.M. Wiseman, B. Gologan, R.G. Cooks, Science (Washington, D. C.) 306 (2004) 471]) in 2004 and the direct analysis in real time (DART [R.B. Cody, J.A. Laramee, H.D. Durst, Anal. Chem. 77 (2005) 2297]) in 2005, this new field of MS has developed rapidly. Numerous permutations of the various options for analyte desorption and ionization have been demonstrated. Desorption steps, such as momentum transfer, dissolution into ricocheting droplets and thermal desorption, have been combined with ionization steps, including ESI, atmospheric pressure chemical ionization and photo-ionization. The large number of possible combinations of desorption and ionization components that have already been applied is creating a proliferation of techniques and acronyms that is becoming ever more complex.

Here, we provide a logical framework for the classification of these related experiments, based on the desorption and ionization processes involved in each.  相似文献   


20.
啤酒中单糖的衍生化HPLC-ESI-MS测定方法研究   总被引:4,自引:0,他引:4  
单糖类样品在溶液中非常稳定,难于离子化,不适合于进行ESI-MS检测。采用1-苯基-3-甲基-5-吡唑啉酮(PMP)将糖类物质衍生化,HPLC-ESI-MS在线联用,选择性离子扫描方式对几种啤酒样品中的5种单糖进行了分离检测。检出限可达到80pg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号