共查询到11条相似文献,搜索用时 0 毫秒
1.
Jiang Du Byung C. Pak Richard Znamirowski Sheronda Statum Atsushi Takahashi Christine B. Chung Graeme M. Bydder 《Magnetic resonance imaging》2009
Collagen fibers in tendons and entheses are highly ordered. The protons within the bound water are subject to dipolar interactions whose strength depends on the orientation of the fibers to the static magnetic field B0. Clinical pulse sequences have been employed to investigate this magic angle effect of the Achilles tendon, but only limited to imaging appearance with a signal void at many angular orientations due to its short T2. Here we investigated the magic angle effect of the Achilles tendons and entheses on a clinical 3-T scanner using clinical sequences as well as an ultrashort TE sequence with a minimal TE of 8 μs. Qualitative and quantitative investigation of the angular-dependent imaging appearance, T1 and T2* values were performed on five ankle specimens. There was a significant increase in signal intensity for all pulse sequences near the magic angle. Mean T2* for tendon increased from 1.94±0.28 ms at 0° relative to the B0 field to 15.25±2.13 ms at 55°, and mean T1 increased from 598±37 ms at 0° to 621±44 ms at 55°. There was less magic angle effect for enthesis whose mean T2* increased from 4.12±0.37 ms at 0° to 12.46±1.78 ms at 55°, and mean T1 increased from 685±41 ms at 0° to 718±56 ms at 55°. 相似文献
2.
Tissues with very short transverse relaxation time (T2) cannot be detected using conventional magnetic resonance (MR) sequences due to the rapid decay of excited MR signals. In this work, a multiecho sequence employing half-pulse excitation and spiral sampling was developed for ultrashort echo time (UTE) imaging of tissues with short T2. Spiral readout gradients were measured and precompensated to reduce gradient distortions due to eddy currents and gradient anisotropy. The effects of spatial blurring due to fast signal decay were investigated experimentally through spiral UTE (SUTE) imaging of rubber bands with different spiral sampling duration. The unwanted long T2 signals were suppressed through the use of an inversion pulse and nulling, and/or subtraction of a later echo image from the initial one. This technique has been applied to imaging of the short T2 components in brain white matter, knee cartilage, bone and carotid vessel wall of normal volunteers at 1.5 T. Preliminary results show high spatial resolution and excellent image contrast for a variety of short T2 tissues in the human body under a relatively short scan time. A quantitative comparison was also made between radial UTE and SUTE in terms of signal-to-noise ratio efficiency. 相似文献
3.
There is increasing interest in imaging short T2 species which show little or no signal with conventional magnetic resonance (MR) pulse sequences. In this paper, we describe the use of three-dimensional ultrashort echo time (3D UTE) sequences with TEs down to 8 μs for imaging of these species. Image contrast was generated with acquisitions using dual echo 3D UTE with echo subtraction, dual echo 3D UTE with rescaled subtraction, long T2 saturation 3D UTE, long T2 saturation dual echo 3D UTE with echo subtraction, single adiabatic inversion recovery 3D UTE, single adiabatic inversion recovery dual echo 3D UTE with echo subtraction and dual adiabatic inversion recovery 3D UTE. The feasibility of using these approaches was demonstrated in in vitro and in vivo imaging of calcified cartilage, aponeuroses, menisci, tendons, ligaments and cortical bone with a 3-T clinical MR scanner. Signal-to-noise ratios and contrast-to-noise ratios were used to compare the techniques. 相似文献
4.
Du J Carl M Bydder M Takahashi A Chung CB Bydder GM 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2010,207(2):304-311
We describe the use of two-dimensional ultrashort echo time (2D UTE) sequences with minimum TEs of 8 μs to image and quantify cortical bone on a clinical 3T scanner. An adiabatic inversion pulse was used for long T(2) water and fat signal suppression. Adiabatic inversion prepared UTE acquisitions with varying TEs were used for T(2) measurement. Saturation recovery UTE acquisitions were used for T(1) measurement. Bone water concentration was measured with the aid of an external reference phantom. UTE techniques were evaluated on cadaveric specimens and healthy volunteers. A signal-to-noise ratio of around 30, contrast-to-noise ratio of around 27/20 between bone and muscle/fat were achieved in tibia in vivo with a nominal voxel size of 0.23 × 0.23 × 6.0 mm(3) in a scan time of 5 min. A mean T(1) of 223 ± 11 ms and mean T(2) of 390 ± 19 μs were found. Mean bone water concentrations of 23.3 ± 1.6% with UTE and 21.7 ± 1.3% with adiabatic inversion prepared UTE sequences were found in tibia in five normal volunteers. The results show that in vivo qualitative and quantitative evaluation of cortical bone is feasible with 2D UTE sequences. 相似文献
5.
E. J. Fernandez A. A. Maudsley T. Higuchi M. W. Weiner 《Magnetic resonance imaging》1992,10(6):965-974
Three dimensional metabolite maps of protonated metabolites were obtained using 1H magnetic resonance spectroscopic imaging at 7 T. Surface coils were used to increase sensitivity and spatial resolution significantly over a volume coil two-dimensional acquisition. Adiabatic pulses were employed to provide homogeneous B1 excitation and frequency selective refocusing over the volume of the rat brain. These techniques were employed to obtain three-dimensional spectroscopic imaging spectra from nominal voxel volumes of 9–30 μl from rat brain. The improved spatial resolution and sensitivity are also demonstrated with studies of focal ischemia in the rat. 相似文献
6.
7.
Chris J.G. Bakker Hendrik de Leeuw Gerrit H. van de Maat Jetse S. van Gorp Job G. Bouwman Peter R. Seevinck 《Magnetic resonance imaging》2013
Lack of spatial accuracy is a recognized problem in magnetic resonance imaging (MRI) which severely detracts from its value as a stand-alone modality for applications that put high demands on geometric fidelity, such as radiotherapy treatment planning and stereotactic neurosurgery. In this paper, we illustrate the potential and discuss the limitations of spectroscopic imaging as a tool for generating purely phase-encoded MR images and parameter maps that preserve the geometry of an object and allow localization of object features in world coordinates. 相似文献
8.
Yusuke Inoue Hirofumi Hata Ai Nakajima Yuji Iwadate Gou Ogasawara Keiji Matsunaga 《Magnetic resonance imaging》2014
Purpose
To optimize the navigator-gating technique for the acquisition of high-quality three-dimensional spoiled gradient-recalled echo (3D SPGR) images of the liver during free breathing.Materials and methods
Ten healthy volunteers underwent 3D SPGR magnetic resonance imaging of the liver using a conventional navigator-gated 3D SPGR (cNAV-3D-SPGR) sequence or an enhanced navigator-gated 3D SPGR (eNAV-3D-SPGR) sequence. No exogenous contrast agent was used. A 20-ms wait period was inserted between the 3D SPGR acquisition component and navigator component of the eNAV-3D-SPGR sequence to allow T1 recovery. Visual evaluation and calculation of the signal-to-noise ratio were performed to compare image quality between the imaging techniques.Result
The eNAV-3D-SPGR sequence provided better noise properties than the cNAV-3D-SPGR sequence visually and quantitatively. Navigator gating with an acceptance window of 2 mm effectively inhibited respiratory motion artifacts. The widening of the window to 6 mm shortened the acquisition time but increased motion artifacts, resulting in degradation of overall image quality. Neither slice tracking nor incorporation of short breath holding successfully compensated for the widening of the window.Conclusion
The eNAV-3D-SPGR sequence with an acceptance window of 2 mm provides high-quality 3D SPGR images of the liver. 相似文献9.
ShaoKuan Zheng Yang Xia 《Journal of magnetic resonance (San Diego, Calif. : 1997)》2009,198(2):188-196
The multi-components of T2 relaxation in cartilage and tendon were investigated by microscopic MRI (μMRI) at 13 and 26 μm transverse resolutions. Two imaging protocols were used to quantify T2 relaxation in the specimens, a 5-point sampling and a 60-point sampling. Both multi-exponential and non-negative-least-square (NNLS) fitting methods were used to analyze the μMRI signal. When the imaging voxel size was 6.76 × 10−4 mm3 and within the limit of practical signal-to-noise ratio (SNR) in microscopic imaging experiments, we found that (1) canine tendon has multiple T2 components; (2) bovine nasal cartilage has a single T2 component; and (3) canine articular cartilage has a single T2 component. The T2 profiles from both 5-point and 60-point methods were found to be consistent in articular cartilage. In addition, the depletion of the glycosaminoglycan component in cartilage by the trypsin digestion method was found to result in a 9.81–20.52% increase in T2 relaxation in articular cartilage, depending upon the angle at which the tissue specimen was oriented in the magnetic field. 相似文献
10.
Chao He Guido Kuenne Esra Yildar Jeroen van Oijen Francesca di Mare Amsini Sadiki 《Combustion Theory and Modelling》2017,21(6):1080-1113
This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties. 相似文献
11.
The optimal diffusion weighting (DW) factor, b, for use in diffusion tensor imaging (DTI) studies remains uncertain. In this study, the geometric relations of DW quantities are examined, in particular, the effects of Rician noise in the measured magnetic resonance signal. This geometric analysis is used to make theoretical predictions for selecting a b value to reduce the influence of noise. It is shown that the optimal b value for DTI studies in healthy human parenchyma is approximately b=1200 s mm−2, with a simple relation given as well for a given expected apparent diffusion coefficient. Monte-Carlo simulations on sets of realistic DTI measures are then performed, verifying the optimal DW for minimizing estimate errors. The effects of noise on various DTI parameters such as anisotropy indices (fractional anisotropy and scaled relative anisotropy), mean diffusivity, radial diffusivity, eigenvalues and the direction of the first eigenvector are investigated as well. 相似文献