首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 7 毫秒
1.
Collagen fibers in tendons and entheses are highly ordered. The protons within the bound water are subject to dipolar interactions whose strength depends on the orientation of the fibers to the static magnetic field B0. Clinical pulse sequences have been employed to investigate this magic angle effect of the Achilles tendon, but only limited to imaging appearance with a signal void at many angular orientations due to its short T2. Here we investigated the magic angle effect of the Achilles tendons and entheses on a clinical 3-T scanner using clinical sequences as well as an ultrashort TE sequence with a minimal TE of 8 μs. Qualitative and quantitative investigation of the angular-dependent imaging appearance, T1 and T2* values were performed on five ankle specimens. There was a significant increase in signal intensity for all pulse sequences near the magic angle. Mean T2* for tendon increased from 1.94±0.28 ms at 0° relative to the B0 field to 15.25±2.13 ms at 55°, and mean T1 increased from 598±37 ms at 0° to 621±44 ms at 55°. There was less magic angle effect for enthesis whose mean T2* increased from 4.12±0.37 ms at 0° to 12.46±1.78 ms at 55°, and mean T1 increased from 685±41 ms at 0° to 718±56 ms at 55°.  相似文献   

2.
Tissues with very short transverse relaxation time (T2) cannot be detected using conventional magnetic resonance (MR) sequences due to the rapid decay of excited MR signals. In this work, a multiecho sequence employing half-pulse excitation and spiral sampling was developed for ultrashort echo time (UTE) imaging of tissues with short T2. Spiral readout gradients were measured and precompensated to reduce gradient distortions due to eddy currents and gradient anisotropy. The effects of spatial blurring due to fast signal decay were investigated experimentally through spiral UTE (SUTE) imaging of rubber bands with different spiral sampling duration. The unwanted long T2 signals were suppressed through the use of an inversion pulse and nulling, and/or subtraction of a later echo image from the initial one. This technique has been applied to imaging of the short T2 components in brain white matter, knee cartilage, bone and carotid vessel wall of normal volunteers at 1.5 T. Preliminary results show high spatial resolution and excellent image contrast for a variety of short T2 tissues in the human body under a relatively short scan time. A quantitative comparison was also made between radial UTE and SUTE in terms of signal-to-noise ratio efficiency.  相似文献   

3.
There is increasing interest in imaging short T2 species which show little or no signal with conventional magnetic resonance (MR) pulse sequences. In this paper, we describe the use of three-dimensional ultrashort echo time (3D UTE) sequences with TEs down to 8 μs for imaging of these species. Image contrast was generated with acquisitions using dual echo 3D UTE with echo subtraction, dual echo 3D UTE with rescaled subtraction, long T2 saturation 3D UTE, long T2 saturation dual echo 3D UTE with echo subtraction, single adiabatic inversion recovery 3D UTE, single adiabatic inversion recovery dual echo 3D UTE with echo subtraction and dual adiabatic inversion recovery 3D UTE. The feasibility of using these approaches was demonstrated in in vitro and in vivo imaging of calcified cartilage, aponeuroses, menisci, tendons, ligaments and cortical bone with a 3-T clinical MR scanner. Signal-to-noise ratios and contrast-to-noise ratios were used to compare the techniques.  相似文献   

4.
We describe the use of two-dimensional ultrashort echo time (2D UTE) sequences with minimum TEs of 8 μs to image and quantify cortical bone on a clinical 3T scanner. An adiabatic inversion pulse was used for long T(2) water and fat signal suppression. Adiabatic inversion prepared UTE acquisitions with varying TEs were used for T(2) measurement. Saturation recovery UTE acquisitions were used for T(1) measurement. Bone water concentration was measured with the aid of an external reference phantom. UTE techniques were evaluated on cadaveric specimens and healthy volunteers. A signal-to-noise ratio of around 30, contrast-to-noise ratio of around 27/20 between bone and muscle/fat were achieved in tibia in vivo with a nominal voxel size of 0.23 × 0.23 × 6.0 mm(3) in a scan time of 5 min. A mean T(1) of 223 ± 11 ms and mean T(2) of 390 ± 19 μs were found. Mean bone water concentrations of 23.3 ± 1.6% with UTE and 21.7 ± 1.3% with adiabatic inversion prepared UTE sequences were found in tibia in five normal volunteers. The results show that in vivo qualitative and quantitative evaluation of cortical bone is feasible with 2D UTE sequences.  相似文献   

5.
包尚联  杜江  高嵩 《物理学报》2013,62(8):88701-088701
骨质量尤其是骨皮质质量的评价方法对骨病的诊断和治疗有重要意义. 随着社会快速老龄化, 如何非侵入地获得准确实用的骨质量评价指标已成为医学物理领域亟待解决的热点问题. 目前有多种骨质量评价方法, 其中双能X射线吸收法获得的骨矿密度值是评价骨质量的现行金标准, 但这个参数有明显缺陷, 如不能反映骨皮质中的有机基质、微结构、孔隙度及灌注等情况, 所以不能准确诊断骨质疏松和预测骨折等疾病. 由于骨的磁共振信号衰减极快,所以常规磁共振成像技术不能探测到骨的信号. 近年来随着理论、方法和设备的不断进步, 超短回波磁共振骨成像成为可能. 本文简要介绍超短回波磁共振骨成像的基础物理理论, 结合作者所在实验室的研究工作对各类定性及定量超短回波磁共振骨皮质成像新方法进行综述, 总结各类方法的特点、适用范围及不足, 指出进一步研究的方向、重点及步骤, 对超短回波磁共振成像在骨质量评估方面的理论研究及工程应用具有指导意义. 关键词: 超短回波 核磁共振成像 骨矿物密度 骨皮质  相似文献   

6.
Three dimensional metabolite maps of protonated metabolites were obtained using 1H magnetic resonance spectroscopic imaging at 7 T. Surface coils were used to increase sensitivity and spatial resolution significantly over a volume coil two-dimensional acquisition. Adiabatic pulses were employed to provide homogeneous B1 excitation and frequency selective refocusing over the volume of the rat brain. These techniques were employed to obtain three-dimensional spectroscopic imaging spectra from nominal voxel volumes of 9–30 μl from rat brain. The improved spatial resolution and sensitivity are also demonstrated with studies of focal ischemia in the rat.  相似文献   

7.
8.
Lack of spatial accuracy is a recognized problem in magnetic resonance imaging (MRI) which severely detracts from its value as a stand-alone modality for applications that put high demands on geometric fidelity, such as radiotherapy treatment planning and stereotactic neurosurgery. In this paper, we illustrate the potential and discuss the limitations of spectroscopic imaging as a tool for generating purely phase-encoded MR images and parameter maps that preserve the geometry of an object and allow localization of object features in world coordinates.  相似文献   

9.

Purpose

To optimize the navigator-gating technique for the acquisition of high-quality three-dimensional spoiled gradient-recalled echo (3D SPGR) images of the liver during free breathing.

Materials and methods

Ten healthy volunteers underwent 3D SPGR magnetic resonance imaging of the liver using a conventional navigator-gated 3D SPGR (cNAV-3D-SPGR) sequence or an enhanced navigator-gated 3D SPGR (eNAV-3D-SPGR) sequence. No exogenous contrast agent was used. A 20-ms wait period was inserted between the 3D SPGR acquisition component and navigator component of the eNAV-3D-SPGR sequence to allow T1 recovery. Visual evaluation and calculation of the signal-to-noise ratio were performed to compare image quality between the imaging techniques.

Result

The eNAV-3D-SPGR sequence provided better noise properties than the cNAV-3D-SPGR sequence visually and quantitatively. Navigator gating with an acceptance window of 2 mm effectively inhibited respiratory motion artifacts. The widening of the window to 6 mm shortened the acquisition time but increased motion artifacts, resulting in degradation of overall image quality. Neither slice tracking nor incorporation of short breath holding successfully compensated for the widening of the window.

Conclusion

The eNAV-3D-SPGR sequence with an acceptance window of 2 mm provides high-quality 3D SPGR images of the liver.  相似文献   

10.
The multi-components of T2 relaxation in cartilage and tendon were investigated by microscopic MRI (μMRI) at 13 and 26 μm transverse resolutions. Two imaging protocols were used to quantify T2 relaxation in the specimens, a 5-point sampling and a 60-point sampling. Both multi-exponential and non-negative-least-square (NNLS) fitting methods were used to analyze the μMRI signal. When the imaging voxel size was 6.76 × 10−4 mm3 and within the limit of practical signal-to-noise ratio (SNR) in microscopic imaging experiments, we found that (1) canine tendon has multiple T2 components; (2) bovine nasal cartilage has a single T2 component; and (3) canine articular cartilage has a single T2 component. The T2 profiles from both 5-point and 60-point methods were found to be consistent in articular cartilage. In addition, the depletion of the glycosaminoglycan component in cartilage by the trypsin digestion method was found to result in a 9.81–20.52% increase in T2 relaxation in articular cartilage, depending upon the angle at which the tissue specimen was oriented in the magnetic field.  相似文献   

11.
ABSTRACT

This paper draws attention to the study of performance of a new Molecular Breast Imaging (MBI) device, whose purpose is the early diagnosis of breast cancer, using Monte Carlo simulations. MBI provides functional and specific information that are more appropriated to dense breasts. Two asymmetric heads with different types of collimators, facing each other in anti-parallel viewing direction, characterize the system. Detectors and phantoms, together with the data taking procedure, are shortly reported. Monte Carlo simulations using the GATE (GEANT4 Application for Tomographic Emission) simulation toolkit have been implemented to evaluate the optimal detector configuration, in terms of sensitivity and spatial resolution, and also to reproduce the real experimental data. The device can be used both in spot compression and in Limited Angle Tomography (LAT); in the latter configuration one detector head with pinhole collimator is able to rotate around the breast in order to diagnose and localized the small tumors.  相似文献   

12.
Spectroscopic measurements and terahertz imaging of the cornea are carried out by using a rapid scanning terahertz time domain spectroscopy(THz-TDS) system.A voice coil motor stage based optical delay line(VCM-ODL) is developed to provide a rather simple and robust structure with both the high scanning speed and the large delay length.The developed system is used for THz spectroscopic measurements and imaging of the corneal tissue with different amounts of water content,and the measurement results show the consistence with the reported results,in which the measurement time using VCM-ODL is a factor of 360 shorter than the traditional motorized optical delay line(MDL).With reducing the water content a monotonic decrease of the complex permittivity of the cornea is observed.The two-term Debye relaxation model is employed to explain our experimental results,revealing that the fast relaxation time of a dehydrated cornea is much larger than that of a hydrated cornea and its dielectric behavior can be affected by the presence of the biological macromolecules.These results demonstrate that our THz spectrometer may be a promising candidate for tissue hydration sensing and practical application of THz technology.  相似文献   

13.
This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.  相似文献   

14.
The optimal diffusion weighting (DW) factor, b, for use in diffusion tensor imaging (DTI) studies remains uncertain. In this study, the geometric relations of DW quantities are examined, in particular, the effects of Rician noise in the measured magnetic resonance signal. This geometric analysis is used to make theoretical predictions for selecting a b value to reduce the influence of noise. It is shown that the optimal b value for DTI studies in healthy human parenchyma is approximately b=1200 s mm−2, with a simple relation given as well for a given expected apparent diffusion coefficient. Monte-Carlo simulations on sets of realistic DTI measures are then performed, verifying the optimal DW for minimizing estimate errors. The effects of noise on various DTI parameters such as anisotropy indices (fractional anisotropy and scaled relative anisotropy), mean diffusivity, radial diffusivity, eigenvalues and the direction of the first eigenvector are investigated as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号