首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging tool that indirectly identifies areas of neural activity in the brain and more recently has been applied to the adult spinal cord (spinal fMRI). Spinal fMRI could clearly benefit pediatric populations as well. The purpose of this work was to characterize the response observed with spinal fMRI in the brainstem and cervical (C) spinal cord of awake, healthy children during thermal stimulation (17°C and 27°C) applied to the right hand. Functional MRI detected neuronal activity in the expected region of the spinal cord (C6 and C7) as well as in the brainstem and thalamus. The observed magnitudes of signal change of the responses to 17°C and 27°C were similar; however, the spatial distribution of active pixels was greater during 17°C stimulation. The results of this study indicate that fMRI can be used to assess activity in the spinal cords of children, with good sensitivity and reliability.  相似文献   

2.

Purpose

Although functional magnetic resonance imaging (fMRI) has revealed that spinal cord injury (SCI) causes anomalous changes in task-induced brain activation, its effect during the resting state remains unclear. The aim of this study is to explore the changes of the brain resting-state function in non-human primates with unilateral SCI.

Materials and methods

Eleven adult female rhesus monkeys were subjected to resting-state fMRI: five with unilateral thoracic SCI and six healthy monkeys, to obtain the fractional amplitude of low-frequency fluctuations (fALFF) of the blood oxygenation level-dependent (BOLD) contrast signal to determine the influence of SCI on the cerebral resting-state function.

Results

The SCI-induced fALFF vary significantly in several encephalic regions, including the left cerebellum, the left thalamus, the right lateral geniculate nucleus, the right superior parietal lobule, and the posterior cingulate gyrus.

Conclusion

Analysis of the resting-state fMRI provides evidence of abnormal spontaneous brain activations in primates with SCI, which may help us understand the pathophysiologic mechanisms underlying the changes in neural plasticity in the central nervous system after SCI.  相似文献   

3.
The number of functional magnetic resonance imaging (fMRI) studies performed on the human spinal cord (SC) has considerably increased in recent years. The lack of a validated processing pipeline is, however, a significant obstacle to the spread of SC fMRI. One component likely to be involved in any such pipeline is the process of SC masking, analogous to brain extraction in cerebral fMRI. In general, SC masking has been performed manually, with the incumbent costs of being very time consuming and operator dependent. To overcome these drawbacks, we have developed a tailored semiautomatic method for segmenting echoplanar images (EPI) of human spine that is able to identify the spinal canal and the SC. The method exploits both temporal and spatial features of the EPI series and was tested and optimized on EPI images of cervical spine acquired at 3 T. The dependence of algorithm performance on the degree of EPI image distortion was assessed by computing the displacement warping field that best matched the EPI to the corresponding high-resolution T(2) images. Segmentation accuracy was above 80%, a significant improvement over values obtained with similar approaches, but not exploiting temporal information. Geometric distortion was found to explain about 50% of the variance of algorithm classification efficiency.  相似文献   

4.
Although event-related fMRI is able to reliably detect brief changes in brain activity and is now widely used throughout systems and cognitive neuroscience, there have been no previous reports of event-related spinal cord fMRI. This is likely attributable to the various technical challenges associated with spinal fMRI (e.g., imaging a suitable length of the cord, reducing image artifacts from the vertebrae and intervertebral discs, and dealing with physiological noise from spinal cord motion). However, with many of these issues now resolved, the largest remaining impediment for event-related spinal fMRI is a deprived understanding of the spinal cord fMRI signal time course. Therefore, in this study, we used a proton density-weighted HASTE sequence, with functional contrast based on signal enhancement by extravascular water protons (SEEP), and a motion-compensating GLM analysis to (i) characterize the SEEP response function in the human cervical spinal cord and (ii) demonstrate the feasibility of event-related spinal fMRI. This was achieved by applying very brief (1 s) epochs of 22°C thermal stimulation to the palm of the hand and measuring the impulse response function. Our results suggest that the spinal cord SEEP response (time to peak ≈8 s; FWHM ≈4 s; and probably lacking pre- and poststimulus undershoots) is slower than previous estimates of SEEP or BOLD responses in the brain, but faster than previously reported spinal cord BOLD responses. Finally, by detecting and mapping consistent signal-intensity changes within and across subjects, and validating these regions with a block-designed experiment, this study represents the first successful demonstration of event-related spinal fMRI.  相似文献   

5.
Demonstrations of the possibility of obtaining functional information from the spinal cord in humans using functional magnetic resonance imaging (fMRI) have been growing in number and sophistication, but the technique and the results that it provides are still perceived by the scientific community with a greater degree of scepticism than fMRI investigations of brain function. Here we review the literature on spinal fMRI in humans during voluntary movements and somatosensory stimulation. Particular attention is given to study design, acquisition and statistical analysis of the images, and to the agreement between the obtained results and existing knowledge regarding spinal cord anatomy and physiology.  相似文献   

6.
Functional magnetic resonance imaging (fMRI) has greatly advanced our current understanding of pain, although most studies to date have focused on imaging of cortical structures. In the present study, we have used fMRI at 3 T to investigate the neural activity evoked by thermal sensation and pain (42°C and 46°C) throughout the entire lower neuroaxis from the first synapse in the spinal cord rostral to the thalamus in healthy subjects. The results demonstrate that noxious thermal stimulation (46°C) produces consistent activity within various structures known to be involved in the pain matrix including the dorsal spinal cord, reticular formation, periaqueductal gray and rostral ventral medulla. However, additional areas of activity were evident that are not considered to be part of the pain matrix, including the olivary nucleus. Thermal stimulation (42°C) reported as either not painful or mildly painful produced quantitative, but not qualitative, differences in neuronal activity depending on the order of experiments. Activity was greater in the spinal cord and brain stem in earlier experiments, compared with repeated experiments after the more noxious (46°C) stimulus had been applied. This study provides significant insight into how the lower neuroaxis integrates and responds to pain in humans.  相似文献   

7.
Functional magnetic resonance imaging (fMRI) of the cortex is a powerful tool for neuroscience research, and its use has been extended into the brainstem and spinal cord as well. However, there are significant technical challenges with extrapolating the developments that have been achieved in the cortex to their use in the brainstem and spinal cord. Here, we develop a normalized coordinate system for the cervical spinal cord and brainstem, demonstrating a semiautomated method for spatially normalizing and coregistering fMRI data from these regions. fMRI data from 24 experiments in eight volunteers are normalized and combined to create the first anatomical reference volume, and based on this volume, we define a standardized region-of-interest (ROI) mask, as well as a map of 52 anatomical regions, which can be applied automatically to fMRI results. The normalization is demonstrated to have an accuracy of less than 2 mm in 93% of anatomical test points. The reverse of the normalization procedure is also demonstrated for automatic alignment of the standardized ROI mask and region-label map with fMRI data in its original (unnormalized) format. A reliable method for spatially normalizing fMRI data is essential for analyses of group data and for assessing the effects of spinal cord injury or disease on an individual basis by comparing with results from healthy subjects.  相似文献   

8.

Background  

Glutamergic excitotoxicity has been shown to play a deleterious role in the pathophysiology of spinal cord injury (SCI). The aim of this study was to investigate the neuroprotective effect of dizocilpine maleate, MK801 (2 mg/Kg, 30 min and 6 hours after injury) in a mice model of SCI. The spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy.  相似文献   

9.

Background and Purpose

Susceptibility weighted imaging (SWI) is sensitive to deoxyhemoglobin and blood products such as hemosiderin in detecting microbleeds in the brain. However, there are no studies on SWI in the spine cord injury so far. The purpose of this study was to evaluate the role of SWI in detecting hemorrhage in acute cervical spinal cord injury (SCI).

Materials and Methods

Twenty-three patients with a history of acute cervical spine trauma were studied. High-resolution SWI, gradient-echo (GRE) T2* weighted-image (T2*WI) and conventional magnetic resonance imaging (MRI) were performed on all patients within 15 days of the onset of injury. On the basis of the MRI findings, the patients were classified into four patterns: normal cord, spinal cord edema, spinal cord contusion and spinal cord hemorrhage. Quantitative analysis was performed by calculating and comparing the signal ratio of the hemorrhage to normal spinal cord on the same slice of T2*WI and SWI. All patients were clinically evaluated in follow-up. Twenty volunteers were also scanned as a control group.

Results

Out of 23 patients with a history of acute cervical spine trauma, 4 patients showed normal spinal cord on both conventional MRI and SWI, 8 had only spinal cord edema and 5 had contusion on conventional MRI, but SWI showed hemorrhage in 2 of the 5 patients with spinal contusion on conventional MRI; the other 6 patients had intraspinal hemorrhage on conventional MRI, and SWI proved hemorrhage in all these 6 patients. There was a significant difference between the signal ratios of hemorrhage to normal tissue on T2*WI and SWI (Z=2.34, P=.02).

Conclusion

Susceptibility weighted imaging is more sensitive than conventional MRI in detecting hemorrhage in acute cervical SCI. This technique could prove to be a useful tool in the routine evaluation of cervical SCI patients.  相似文献   

10.
Magnetic resonance imaging (MRI) has recently been applied to study spinal cord function in humans. However, spinal functional MRI (fMRI) encounters major technical challenges with cardiac noise being considered a major source of noise. The present study relied on echo-planar imaging of the cervical cord at short TR (TR=250 ms; TE=40 ms; flip=45 degrees), combined with plethysmographic recordings to characterize the spatiotemporal properties of cardiac-induced signal changes in spinal fMRI. Frequency-based analyses examining signal change at the cardiac frequency confirmed mean fluctuations of about 10% (relative to the mean signal) in the spinal cord and surrounding cerebrospinal fluid (CSF), with maximal responses reaching up to 66% in some voxels. A spatial independent component analysis (sICA) confirmed that cardiac noise is an important source of variance in spinal fMRI with several components showing a response coherent with the cardiac frequency spectrum. The time course of the main cardiac components approximated a sinusoidal function tightly coupled to the cardiac systole with at least one component showing a comparable temporal profile across runs and subjects. Spatially, both the frequency-domain analysis and the sICA demonstrated cardiac noise distributed irregularly along the full rostrocaudal extent of the segments scanned with peaks concentrated in the ventral part of the lateral slices in all scans and subjects, consistent with the major channels of CSF flow. These results confirm that cardiac-induced changes are a significant source of noise likely to affect the detection of spinal Blood Oxygen Level Dependent (BOLD) responses. Most importantly, the complex spatiotemporal structure of cardiac noise is unlikely to be accounted for adequately by ad hoc linear methods, especially in data acquired using long TR (i.e. aliasing the cardiac frequency). However, the reliable spatiotemporal distribution of cardiac noise across scanning runs and within subjects may provide a valid means to identify and extract cardiac noise based on sICA methods.  相似文献   

11.
In the traumatically injured spinal cord, decreased perfusion is believed to contribute to secondary tissue damage beyond the primary mechanical impact, and restoration of perfusion is believed to be a promising therapeutic target. However, methods to monitor spinal cord perfusion non-invasively are limited. Perfusion magnetic resonance imaging (MRI) techniques established for the brain have not been routinely adopted to the spinal cord. The purpose of this study was to examine the relationship between spinal cord blood flow (SCBF) and injury severity in a rat thoracic spinal cord contusion injury (SCI) model using flow-sensitive alternating inversion recovery (FAIR) with two variants of the label position. SCBF as a marker of severity was compared to T1 mapping and to spinal cord-optimized diffusion weighted imaging (DWI) with filtered parallel apparent diffusion coefficient. Thirty-eight rats underwent a T10 contusion injury with varying severities (8 sham; 10 mild; 10 moderate; 10 severe) with MRI performed at 1 day post injury at the lesion site and follow-up neurological assessments using the Basso, Beattie, Bresnahan (BBB) locomotor scoring up to 28 days post injury. Using whole-cord regions of interest at the lesion epicenter, SCBF was decreased with injury severity and had a significant correlation with BBB scores at 28 days post injury. Importantly, estimates of arterial transit times (ATT) in the injured spinal cord were not altered after injury, which suggests that FAIR protocols optimized to measure SCBF provide more value in the context of acute traumatic injury to the cord. T1-relaxation time constants were strongly related to injury severity and had a larger extent of changes than either SCBF or DWI measures. These findings suggest that perfusion decreases in the spinal cord can be monitored non-invasively after injury, and multi-parametric MRI assessments of perfusion, diffusion, and relaxation capture unique features of the pathophysiology of preclinical injury.  相似文献   

12.
Functional magnetic resonance imaging (fMRI) of the human spinal cord has revealed important details of activity involved with innocuous sensory stimuli, including the primary input to ipsilateral dorsal gray matter and activity in bilateral ventral gray matter regions. The latter is hypothesized to reflect descending modulation from the brainstem and cortex. Here, the functions corresponding to these areas of activity are investigated by varying the temperature of innocuous thermal stimuli, and the order they are presented, across repeated fMRI experiments in the spinal cord and brainstem. Group results and connectivity analyses reveal that the ipsilateral dorsal gray matter (dGM), the primary site of sensory input, also receives inhibitory input from the rostral ventromedial medulla and the locus coeruleus, two components of the brainstem opiate analgesia system. Ipsilateral ventral gray matter (vGM) receives input from the ipsilateral dGM and inhibitory input from the pontine reticular formation, which is involved with coordination of movements by modulation of ventral horn cells. Contralateral vGM regions appear to receive input from only the ipsilateral dGM in these studies. These results provide an unprecedented view of details of human spinal cord function and descending modulation, and have important implications for assessment of the effects of spinal cord trauma and disease by means of fMRI.  相似文献   

13.
We compared the sensitivity of single and triple dose Gd-DTPA magnetic resonance imaging (MRI) in detecting enhancing lesions in the spinal cord (SC) from 15 patients with multiple sclerosis (MS). The patients were examined monthly on four occasions. We detected two enhancing lesions in two of 15 (13%) patients when a single dose of Gd-DTPA was used. No additional lesions were detected when a triple dose of Gd-DTPA was used. These results 1) confirm that enhanced spinal cord imaging does not significantly increase the detection of active lesions in MS, 2) they do not support the general application of triple dose Gd-DTPA when examining the SC but 3) suggest that further studies taking into account SC symptoms are necessary.  相似文献   

14.
Many published literature sources have described the histopathological characteristics of post‐traumatic syringomyelia (PTS). However, three‐dimensional (3D) visualization studies of PTS have been limited due to the lack of reliable 3D imaging techniques. In this study, the imaging efficiency of propagation‐based synchrotron radiation microtomography (PB‐SRµCT) was determined to detect the 3D morphology of the cavity and surrounding microvasculature network in a rat model of PTS. The rat model of PTS was established using the infinite horizon impactor to produce spinal cord injury (SCI), followed by a subarachnoid injection of kaolin to produce arachnoiditis. PB‐SRµCT imaging and histological examination, as well as fluorescence staining, were conducted on the animals at the tenth week after SCI. The 3D morphology of the cystic cavity was vividly visualized using PB‐SRµCT imaging. The quantitative parameters analyzed by PB‐SRµCT, including the lesion and spared spinal cord tissue area, the minimum and maximum diameters in the cystic cavity, and cavity volume, were largely consistent with the results of the histological assessment. Moreover, the 3D morphology of the cavity and surrounding angioarchitecture could be simultaneously detected on the PB‐SRµCT images. This study demonstrated that high‐resolution PB‐SRµCT could be used for the 3D visualization of trauma‐induced spinal cord cavities and provides valuable quantitative data for cavity characterization. PB‐SRµCT could be used as a reliable imaging technique and offers a novel platform for tracking cavity formation and morphological changes in an experimental animal model of PTS.  相似文献   

15.

Background  

Central nervous system axons lack a robust regenerative response following spinal cord injury (SCI) and regeneration is usually abortive. Supraspinal pathways, which are the most commonly studied for their regenerative potential, demonstrate a limited regenerative ability. On the other hand, propriospinal (PS) neurons, with axons intrinsic to the spinal cord, have shown a greater regenerative response than their supraspinal counterparts, but remain relatively understudied in regards to spinal cord injury.  相似文献   

16.

Background  

Propriospinal neurons, with axonal projections intrinsic to the spinal cord, have shown a greater regenerative response than supraspinal neurons after axotomy due to spinal cord injury (SCI). Our previous work focused on the response of axotomized short thoracic propriospinal (TPS) neurons following a low thoracic SCI (T9 spinal transection or moderate spinal contusion injury) in the rat. The present investigation analyzes the intrinsic response of cervical propriospinal neurons having long descending axons which project into the lumbosacral enlargement, long descending propriospinal tract (LDPT) axons. These neurons also were axotomized by T9 spinal injury in the same animals used in our previous study.  相似文献   

17.
Noninvasive functional studies on human spinal cord by means of magnetic resonance imaging (MRI) are gaining attention because of the promising applications in the study of healthy and injured central nervous system. The findings obtained are generally consistent with the anatomic knowledge based on invasive methods, but the origin and specificity of functional contrast is still debated. In this paper, a review of current knowledge and major issues about functional MRI (fMRI) in the human spinal cord is presented, with emphasis on the main methodological and technical problems and on forthcoming applications as clinical tool.  相似文献   

18.
Despite the popularity and widespread application of functional magnetic resonance imaging (fMRI) in recent years, the physiological bases of signal change are not yet fully understood. Blood oxygen level-dependant (BOLD) contrast — attributed to local changes in blood flow and oxygenation, and therefore magnetic susceptibility — has become the most prevalent means of functional neuroimaging. However, at short echo times, spin-echo sequences show considerable deviations from the BOLD model, implying a second, non-BOLD component of signal change. This has been dubbed “signal enhancement by extravascular water protons” (SEEP) and is proposed to result from proton-density changes associated with cellular swelling. Given that such changes are independent of magnetic susceptibility, SEEP may offer new and improved opportunities for carrying out fMRI in regions with close proximity to air–tissue and/or bone–tissue interfaces (e.g., the prefrontal cortex and spinal cord), as well as regions close to large blood vessels, which may not be ideally suited for BOLD imaging. However, because of the interdisciplinary nature of the literature, there has yet to be a thorough synthesis, tying together the various and sometimes disparate aspects of SEEP theory. As such, we aim to provide a concise yet comprehensive overview of SEEP, including recent and compelling evidence for its validity, its current applications and its future relevance to the rapidly expanding field of functional neuroimaging. Before presenting the evidence for a non-BOLD component of endogenous functional contrast, and to enable a more critical review for the nonexpert reader, we begin by reviewing the fundamental principles underlying BOLD theory.  相似文献   

19.

Purpose

To improve signal-noise-ratio of in vivo mouse spinal cord diffusion tensor imaging using-phase aligned multiple spin-echo technique.

Material and methods

In vivo mouse spinal cord diffusion tensor imaging maps generated by multiple spin-echo and conventional spin-echo diffusion weighting were examined to demonstrate the efficacy of multiple spin-echo diffusion sequence to improve image quality and throughput. Effects of signal averaging using complex, magnitude and phased images from multiple spin-echo diffusion weighting were also assessed. Bayesian probability theory was used to generate phased images by moving the coherent signals to the real channel to eliminate the effect of phase variation between echoes while preserving the Gaussian noise distribution. Signal averaging of phased multiple spin-echo images potentially solves both the phase incoherence problem and the bias of the elevated Rician noise distribution in magnitude image. The proposed signal averaging with Bayesian phase-aligned multiple spin-echo images approach was compared to the conventional spin-echo data acquired with doubling the scan time. The diffusion tensor imaging parameters were compared in the mouse contusion spinal cord injury. Significance level (p-value) and effect size (Cohen’s d) were reported between the control and contused spinal cord to inspect the sensitivity of each approach in detecting white matter pathology.

Results

Compared to the spin-echo image, the signal-noise-ratio increased to 1.84-fold using the phased image averaging and to 1.30-fold using magnitude image averaging in the spinal cord white matter. Multiple spin-echo phased image averaging showed improved image quality of the mouse spinal cord among the tested methods. Diffusion tensor imaging metrics obtained from multiple spin-echo phased images using three echoes and two averages closely agreed with those derived by spin-echo magnitude data with four averages (two times more in acquisition time). The phased image averaging correctly reflected pathological features in contusion spinal cord injury.

Conclusion

Our in vivo imaging results indicate that averaging the phased multiple spin-echo images yields an 84% signal-noise-ratio increase over the spin-echo images and a 41% gain over the magnitude averaged multiple spin-echo images with equal acquisition time. Current results from the animal model of spinal cord injury suggest that the phased multiple spin-echo images could be used to improve signal-noise-ratio.  相似文献   

20.
The amorphous ferromagnet Fe81B13.5Si3.5C2 (Metglas® 2605SC) has been investigated with Mössbauer spectroscopy. The hyperfine interaction parameters are studied between 80 and 300 K from which some characteristic properties are deduced. The behaviour of the amorphous alloy at higher temperatures has been studied by the room temperature spectra of annealed samples. After a structural relaxation process, a two step crystallization transformation is observed leading to Fe-Si alloy and Fe2(B, C). X-ray diffraction of samples annealed at higher temperatures reveals the presence of an orthorhombic Fe-B-Si phase of which the structure changes slightly with annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号