首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates the optimization of double-pulse collinear femtosecond laser-induced breakdown spectroscopy (FLIBS) for silicon. Double-pulse FLIBS signal enhancements were observed over an extended range of sample focal plane position compared to single pulse FLIBS. The FLIBS signal intensity was studied as a function of pulse energy, inter-pulse delay (0 ps‑80 ps) and sample position. Correlation between crater volume and signal intensity was measured over a limited range of the sample focal plane position. It was found that double-pulse FLIBS is superior to single pulse for certain focal plane positions.  相似文献   

2.
The enhancement of emission intensity resulting from the interaction between two laser-induced plasmas on two orthogonal targets was investigated using double pulse laser-induced breakdown spectroscopy (LIBS) at 0.7 Pa, by means of time-resolved spectroscopy and fast photography. The results showed that the interaction between both plasmas improved carbon emission intensity in comparison to a single laser-induced plasma. For all the carbon lines of interest 477.2 nm (CI), 426.7 nm (CII), and 473.4 nm (C2 Swan band head), the intensity enhancement showed a maximum at a delay between lasers in the range from 2 to 5 μs; moreover it increased with the fluence of the first laser. On the other hand, in the case of C2 the intensity enhancement reached a maximum at 5 mm from the target; however it decreased with increasing fluence of the second laser. The largest intensity enhancement found was twofold for atomic species and sixfold for molecular species.  相似文献   

3.
Ultraviolet pulses (266 nm) delivered by a quadrupled Nd:YAG laser were used to analyze organic samples with laser-induced breakdown spectroscopy (LIBS). We present characteristics of the spectra obtained from organic samples with special attentions on the emissions of organic elements, O and N, and molecular bonds CN. The choice of these atomic or molecular species is justified on one hand, by the importance of these species to specify organic or biological materials; and on the other hand by the possible interferences with ambient air when laser ablation takes place in the atmosphere. Time-resolved LIBS was used to determine the time-evolution of line intensity emitted from these species. We demonstrate different kinetic behaviors corresponding to different origins of emitters: native atomic or molecular species directly vaporized from the sample or those generated through dissociation or recombination due to interaction between laser-induced plasma and air molecules. Our results show the ability of time-resolved UV-LIBS for detection and identification of native atomic or molecular species from an organic sample.  相似文献   

4.
The present work studies two different strategies to identify urinary calculus. On one hand, (linear or parametric and rank or non-parametric) correlation methods using a μ-LIBS system are studied. On the other hand, elemental ratios of reference materials are determined by using a higher-energy laser and an Echelle spectrograph with an ICCD camera, although without microscope. A data-treatment method was applied for each system and real samples of kidney stones - previously analyzed by IR spectroscopy - were used for reliable evaluation of two identification strategies.  相似文献   

5.
Laser-induced breakdown spectroscopy (LIBS) in the vacuum ultraviolet range (VUV, λ < 200 nm) is employed for the detection of trace elements in polyethylene (PE) that are difficult to detect in the UV/VIS range. For effective laser ablation of PE, we use a F2 laser (wavelength λ = 157 nm) with a laser pulse length of 20 ns, a pulse energy up to 50 mJ, and pulse repetition rate of 10 Hz. The optical radiation of the laser-induced plasma is measured by a VUV spectrometer with detection range down to λ = 115 nm. A gated photon-counting system is used to acquire time-resolved spectra. From LIBS measurements of certified polymer reference materials, we obtained a limit of detection (LOD) of 50 µg/g for sulphur and 215 µg/g for zinc, respectively.The VUV LIBS spectra of PE are dominated by strong emission lines of neutral and ionized carbon atoms. From time-resolved measurements of the carbon line intensities, we determine the temporal evolution of the electronic plasma temperature, Te. For this, we use Saha–Boltzmann plots with the electron density in the plasma, Ne, derived from the broadening of the hydrogen H-α line. With the parameters Te and Ne, we calculate the intensity ratio of the atomic sulphur and carbon lines at 180.7 nm and at 175.2 nm, respectively. The calculated intensity ratios are in good agreement with the experimentally measured results.  相似文献   

6.
The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO2, Al2O3, Fe2O3, CaO…) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004 [1]). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002 [2]) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003[3]).In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis “on tape” was performed in order to establish the experimental conditions for the future “online analysis”.  相似文献   

7.
Multi-pulse laser induced breakdown spectroscopy (LIBS), in combination with the generalized linear correlation calibration method (GLCM), was applied to the quantitative analysis (fineness determination) of quaternary gold alloys. Accuracy and precision on the order of a few thousandths (‰) was achieved. The analytical performance is directly comparable to that of the standard cupellation method (fire assay), but provides results within minutes and is virtually non-destructive, as it consumes only a few micrograms of the sample.  相似文献   

8.
Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (LIBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, λ = 1064 nm) and the emission signals were collimated by lenses into an optical fiber coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils.  相似文献   

9.
Single- and double-pulse laser-induced breakdown spectroscopy techniques applied to the analysis of pressed pellets of silicate raw materials were compared in terms of precision, sensitivity and limits of detection. Two Nd:YAG lasers (1064 and 532 mm) in an orthogonal configuration with a reheating arrangement have been employed. The main factors influencing system performance were optimized, i.e. laser pulse energies and interpulse separation. The behaviour of plasma temperature was studied over a period of time and calibration curves for Mg were constructed for both the single and double-pulse setup. When comparing the single- and double-pulse techniques, limits of detection of Si and Mg for the double-pulse technique were found to be 10 times lower.  相似文献   

10.
Laser-induced breakdown spectroscopy (LIBS) is applied for depth profile analysis of different thicknesses of copper foils attached on steel and aluminum substrates. In order to account interfacial effects, depth profile analysis of copper coated on steel is also carried out. Experiments are done at ambient air and at two different wavelengths of 266 and 1064 nm of a Nd:YAG laser with pulse durations of 5 ns. A three-dimensional model of multi-pulse laser ablation is introduced on the base of normal evaporation mechanism and the simulation results are compared with the experiments. A normalized concentration (CN) is introduced for determination of interface position and results are compared with the usually used normalized intensity (IN). The effect of coating thickness on average ablation rate and resolution of depth profiling are examined. There is a correlation coefficient higher than 0.95 between the model and experimental depth profiles based on the CN method. Depth profile analysis on the base of CN method shows a better depth resolution in comparison with IN method .Increase in the layer thickness, leads to a decrease in the ablation rate.  相似文献   

11.
Depth-profiling of a thermal barrier coating (TBC) system was carried out using femtosecond laser-induced breakdown spectroscopy (fs-LIBS). The TBC system consisted of an outer 7% yttria stabilized zirconia (7YSZ) ceramic coating and an inner Pt-modified bond coat on a Ni-based superalloy single crystal substrate. In the absence of the ceramic layer, it was possible to qualitatively differentiate between the bond coat and the substrate, and also between the two layers of the bond coat. The spatial location of the interface between the two bond coat layers could also be obtained accurately from the spectral profile of W. In presence of the ceramic coating, it was also possible to easily and accurately determine the ceramic/bond coat interface from the spectral profile of Al. Potential use of fs-LIBS in combination with fs laser machining to produce superior quality cooling holes on thermal barrier coated superalloy components is discussed.  相似文献   

12.
Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation.

Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.  相似文献   


13.
14.
Limits of detection have been studied for several elements in aluminium and steel alloys, at atmospheric pressure in air, by use of the single and collinear double-pulse configurations of laser-induced breakdown spectroscopy. For this purpose, calibration plots were constructed for Mg, Al, Si, Ti, Cr, Mn, Fe, Ni, and Cu using a set of certified aluminium alloy samples and a set of certified steel samples. The investigation included optimization of the experimental conditions to furnish the best signal-to-noise ratio. Inter-pulse delay, gate width, and acquisition delay were studied. The detection limits for the elements of interest were calculated under the optimum conditions for the double-pulse configuration and compared with those obtained under the optimum conditions for single-pulse configuration. Significantly improved detection limits were achieved, for all the elements investigated, and in both aluminium and steel, by use of the double-pulse configuration. The experimental findings are discussed in terms of the measured plasma conditions (particle and electron density, and temperature).  相似文献   

15.
Lead (Pb) emission intensity (atomic line 405.78 nm) dependence on the sample matrix (metal alloy) was studied by means of collinear double pulse (DP)-laser induced breakdown spectroscopy (LIBS). The measurement of the emission intensity produced by three different wavelength combinations (i.e. I:532 nm–II:1064 nm, I:532 nm–II:532 nm, and I:532 nm–II:355 nm) from three series of standard reference materials showed that the lead atomic line 405.78 nm emission intensity was dependent on the sample matrix for all the combination of wavelengths, however reduced dependency was found for the wavelength combination I:532 nm–II:355 nm.  相似文献   

16.
A double pulse-laser induced breakdown spectroscopy (DP-LIBS) was used to determine arsenic (As) concentration in 16 soil samples collected from 5 different mine tailing sites in Korea. We showed that the use of double pulse laser led to enhancements of signal intensity (by 13% on average) and signal-to-noise ratio of As emission lines (by 165% on average) with smaller relative standard deviation compared to single pulse laser approach. We believe this occurred because the second laser pulse in the rarefied atmosphere produced by the first pulse led to the increase of plasma temperature and populations of exited levels. An internal standardization method using a Fe emission line provided a better correlation and sensitivity between As concentration and the DP-LIBS signal than any other elements used. The Fe was known as one of the major components in current soil samples, and its concentration varied not substantially. The As concentration determined by the DP-LIBS was compared with that obtained by atomic absorption spectrometry (AAS) to evaluate the current LIBS system. They are correlated with a correlation coefficient of 0.94. The As concentration by the DP-LIBS was underestimated in the high concentration range (>1000 mg-As/kg). The loss of sensitivity that occurred at high concentrations could be explained by self-absorption in the generated plasma.  相似文献   

17.
In this review we discuss the application of laser-induced breakdown spectroscopy (LIBS) to the problem of detection of residues of explosives. Research in this area presented in open literature is reviewed. Both laboratory and field-tested standoff LIBS instruments have been used to detect explosive materials. Recent advances in instrumentation and data analysis techniques are discussed, including the use of double-pulse LIBS to reduce air entrainment in the analytical plasma and the application of advanced chemometric techniques such as partial least-squares discriminant analysis to discriminate between residues of explosives and non-explosives on various surfaces. A number of challenges associated with detection of explosives residues using LIBS have been identified, along with their possible solutions. Several groups have investigated methods for improving the sensitivity and selectivity of LIBS for detection of explosives, including the use of femtosecond-pulse lasers, supplemental enhancement of the laser-induced plasma emission, and complementary orthogonal techniques. Despite the associated challenges, researchers have demonstrated the tremendous potential of LIBS for real-time detection of explosives residues at standoff distances. Figure This review discusses the application of laser-induced breakdown spectroscopy (LIBS) to the problem of explosive residue detection. LIBS offers the capability for real-time, standoff detection of trace amounts of residue explosives on various surfaces  相似文献   

18.
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macro-nutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic. A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 µs integration time gate, 1.1 µs delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem.  相似文献   

19.
In most instances, laser-induced breakdown spectroscopy (LIBS) spectra are obtained through analog accumulation of multiple shots in the spectrometer CCD. The average acquired in the CCD at a given wavelength is assumed to be a good representation of the population mean, which in turn is implicitly regarded to be the best estimator for the central value of the distribution of the spectrum at the same wavelength. Multiple analog accumulated spectra are taken and then in turn averaged wavelength-by-wavelength to represent the final spectrum. In this paper, the statistics of single-shot and analog accumulated LIBS spectra of both solids and liquids were examined to evaluate whether the spectrum averaging approach is statistically defensible. At a given wavelength, LIBS spectra are typically drawn from a Frechet extreme value distribution, and hence the mean of an ensemble of LIBS spectra is not necessarily an optimal summary statistic. Under circumstances that are broadly general, the sample mean for LIBS data is statistically inconsistent and the central limit theorem does not apply. This result appears to be due to very high shot-to-shot plasma variability in which a very small number of spectra are high in intensity while the majority are very weak, yielding the extreme value form of the distribution. The extreme value behavior persists when individual shots are analog accumulated. An optimal estimator in a well-defined sense for the spectral average at a given wavelength follows from the maximum likelihood method for the extreme value distribution. Example spectra taken with both an Echelle and a Czerny–Turner spectrometer are processed with this scheme to create smooth, high signal-to-noise summary spectra. Plasma imaging was used in an attempt to visually understand the observed variability and to validate the use of extreme value statistics. The data processing approach presented in this paper is statistically reliable and should be used for accurate comparisons of LIBS spectra instead of arithmetic averaging on either complete or censored data sets.  相似文献   

20.
Laser-induced breakdown spectroscopy (LIBS) has been used to determine the lead content of different types of lead silicate glasses commercially designed as sonorous glass (which contain ∼ 10 wt.% PbO); crystal glass (with at least 24 wt.% PbO) and superior crystal glass (with at least 30 wt.% PbO). Seven different types of glass samples were selected, including historic-original, model and commercially available. The selected samples were artificially weathered under neutral, acid and alkaline attack. Analysis by LIBS was carried out in vacuum under excitation at 266 nm and results were compared with those obtained by conventional techniques used for glass characterization. Composition of the bulk glasses was analyzed by XRF (X-ray fluorescence) and the corroded surfaces were characterized by SEM/EDX (scanning electron microscopy/energy dispersive X-ray microanalysis). A linear correlation was obtained between the intensity of selected Pb lines in the LIB spectra and the PbO content. The effect of corrosion could be characterized by comparing successive LIB spectra recorded on the same area; acid attack resulted in a decrease of PbO, CaO and Na2O content in the surface with respect to the bulk of the sample, while minor changes in the composition were noticed under alkaline attack. These results show LIBS as a useful technique to classify the different types of lead glasses by their lead content and to determine and asses the degree and type of corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号