首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work describes three empirical cases where the influence of the microscopic and macroscopic morphology of the sample depositions analyzed by total-reflection X-ray fluorescence with respect to the accuracy and uncertainties of its analytical results is shown. The first case was the direct solid analysis of reference clay, where a strong dependence between the accuracy and the uncertainty of the evaluated elements with respect to the microscopic morphology of the depositions obtained in water and toluene liquid medium was observed. The second case was the analysis of a solid suspension of magnetite nanoparticles, where the evaluation of the different macroscopic deposition morphologies, for different kinds of sample carriers and evaporation processes, produces an important variation of the uncertainty associated to the Fe measurements but not for its nominal values. Finally, the third case was the analysis of Ru and Se impregnated in carbon nanoparticles. In this case, the ultrasonic modifications of the particle size distributions in the solid suspensions, together with the macroscopic morphology variation of its solid depositions, produce drastic consequences in the uncertainties associated with the metallic content.  相似文献   

2.
This paper reports the quantitative methodologies developed for the compositional characterization of archaeological ceramics by total-reflection X-ray fluorescence at two levels. A first quantitative level which comprises an acid leaching procedure, and a second selective level, which seeks to increase the number of detectable elements by eliminating the iron present in the acid leaching procedure. Total-reflection X-ray fluorescence spectrometry has been compared, at a quantitative level, with Instrumental Neutron Activation Analysis in order to test its applicability to the study of this kind of materials. The combination of a solid chemical homogenization procedure previously reported with the quantitative methodologies here presented allows the total-reflection X-ray fluorescence to analyze 29 elements with acceptable analytical recoveries and accuracies.  相似文献   

3.
Optimisation of total-reflection X-ray fluorescence for aerosol analysis   总被引:1,自引:0,他引:1  
The capabilities of total-reflection X-ray fluorescence (TXRF) analysis were investigated to develop an efficient, simple, rapid and low cost analytical method for aerosols. The technique involves direct impaction of airborne particulate matter on the quartz sample-reflector discs for TXRF. Special attention was paid to bounce-off effects, and hence the aerosol size distributions for the impactor stages; influence of siliconizing the quartz discs on the adhesion of particles; choice of the internal standard; local distribution of the material deposited on the quartz disc; and alternative materials for aerosol collection. Moreover, the proposed method could be used in combination with a one-stage impactor for total aerosol mass collection and analysis.  相似文献   

4.
In this paper we present a procedure allowing total-reflection X-ray fluorescence spectrometry (TXRF) determinations of arsenic in water samples, especially in seawater samples. The procedure consists of an arsenate reduction step (performed by using a l-cysteine solution) followed by a complexation of As+3 with sodium dibenzyldithiocarbamate and solid phase extraction. The new procedure is a modification of a method developed by Prange and allows a simultaneous determination of As together with V, Fe, Ni, Cu, Zn, Pb, and U in seawater by TXRF. The procedure was tested using the Certified Reference Material CASS-4 and was later applied to regular seawater samples collected from the North Sea. The detection limit for arsenic is 10 ng L− 1.  相似文献   

5.
The effect of matrix contents on the detection limit of total reflection X-ray fluorescence analysis was experimentally investigated using a set of multielement standard solutions (500 ng/mL of each element) in variable concentrations of NH4NO3. It was found that high matrix concentration, i.e. 0.1–10% NH4NO3, had a strong effect on the detection limits for all investigated elements, whereas no effect was observed at lower matrix concentration, i.e. 0–0.1% NH4NO3.  相似文献   

6.
X-ray fluorescence spectrometry with total reflection conditions is applied in the qualitative and quantitative determination of impurities in thin layers of Ti, TiO2, and HfO2 prepared by evaporation and of SiO2, TiO2, and Ta2O5 prepared by ion beam sputtering. The same method is used to examine stainless steel discs, which have to be used as reference materials,Dedicated to Professor Günther Tölg on the occasion of his 60th birthday  相似文献   

7.
The analytical capability of the laboratory scale vacuum total reflection X-ray fluorescence (TXRF) spectrometer (Wobistrax) was studied for the determination of the Z elements (Na, Mg, P, S, K and Ca) in different biological matrices represented by the following certified reference materials: MURST-ISS-A2 Antarctic krill, IAEA-331 spinach, NIST 1577a bovine liver, and SERONORM™ Trace Elements Serum Level 1.First, the stability of the response factors (relative sensitivity) against Ti internal standard was checked in the concentration range of 1 to 1000 mg/L in a diluted nitric acid matrix. It has been found that the upper limit of the analytical concentration range for K and Ca can be as high as 1000 mg/L; on the other hand, the remaining elements cannot be determined above a concentration of some tens mg/L.The established response factors were used for the elemental analysis of the four certified reference materials after normal-volume microwave assisted acid digestion. In the case of the serum sample, different preparation methods were compared as follow: direct analysis, microwave assisted acid digestion in normal-volume and micro-vessels, as well as the vapor-phase digestion directly on the TXRF carrier plates.On the basis of the results, the normal-volume digestion results in rather high dilution of the samples; thus, elements at low concentration could not be detected in some of the samples. On the other hand, this method offers the highest rate of both organic matrix decomposition and inorganic matrix dilution; thus, the background and the standard deviation of the results were the lowest. In general, this method was found to be useful for the analysis of samples with high dissolved (organic + inorganic) content if the analytes are present at a concentration considerable above the quantification limit.In the case of the microscale and the vapor-phase digestion, both the organic and inorganic matters remain at elevated concentration; thus, higher background and self-absorption of the fluorescent radiation occurred, deteriorating the analytical performance.  相似文献   

8.
Two different approaches were used to improve the capabilities of solid sampling (SS) electrothermal vaporization (ETV) coupled to inductively coupled plasma optical emission spectrometry (ICP-OES) for the direct analysis of powdered rice. Firstly, a cooling step immediately before and after the vaporization step in the ETV temperature program resulted in a much sharper analyte signal peak. Secondly, point-by-point internal standardization with an Ar emission line significantly improved the linearity of calibration curves obtained with an increasing amount of rice flour certified reference material (CRM). Under the optimized conditions, detection limits ranged from 0.01 to 6 ng g−1 in the solid, depending on the element and wavelength selected. The method was validated through the quantitative analysis of corn bran and wheat flour CRMs. Application of the method to the multi-elemental analysis of 4-mg aliquots of real organic long grain rice (white and brown) also gave results for Al, As, Co, Cu, Fe, Mg, Se, Pb and Zn in agreement with those obtained by inductively coupled plasma mass spectrometry following acid digestion of 0.2-g aliquots. As the analysis takes roughly 5 min per sample (2.5 min for grinding, 0.5–1 min for weighing a 4-mg aliquot and 87 s for the ETV program), this approach shows great promise for fast screening of food samples.  相似文献   

9.
A significant amount of environmental studies related to selenium determination in different environmental compartments have been published in the last years due to the narrow range between the Se nutritious requirement as essential element and toxic effects upon exposure. However, the direct analysis of complex liquid samples like natural waters and extraction solutions presents significant problems related to the low Se concentrations and the complicated matrix of this type of samples.  相似文献   

10.
11.
A new apparatus, called ‘membraneless vaporization’ (MBL-VP) unit was designed and developed for direct analysis of solid samples. Solid analyte was converted into a gaseous form which then reacts with an indicator reagent. Change in absorbance was used to quantitate the analyte. Stirring with a magnetic bar was employed to facilitate the evaporation of the gas. Unlike the pervaporation technique, hydrophobic membrane was not required for this MBL-VP technique.Application of the membraneless technique for direct determination of calcium carbonate in calcium supplements, has shown to be very precise (R.S.D. = 2.5% for 0.16 mmol CO32−), with detection limit of 0.5 mg CaCO3. Results by this method agreed well with flame atomic absorption spectrometric method. Sample throughput was 20 samples h−1.  相似文献   

12.
A new method for the direct analysis of coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis was developed, aiming at the determination of Br and Cl. The procedure does not require any significant sample pretreatment and allows simultaneous determination of both elements to be carried out, requiring small mass aliquots of sample (about 0.5 mg). All operating parameters, including carrier gas flow-rate and RF power, were optimized for maximum sensitivity. The use of modifiers/aerosol carriers (Pd, Pd + Al and Pd + Ca) was evaluated, and the mixture of Pd and Ca was chosen, allowing pyrolysis and vaporization temperatures of 700 °C and 1900 °C, respectively. Chlorine was accurately determined using calibration against solid standards, whereas Br could also be determined using calibration against aqueous standard solutions. The limits of quantification were 0.03 μg g−1 for Br and 7 μg g−1 for Cl, and no spectral interferences were observed.  相似文献   

13.
An alternative device for the direct solid analysis (DSA) for copper determination by flame atomic absorption spectrometry (FAAS) is proposed. Copper was directly determined in commercial medicinal plants used as dietary supplements. The determination of copper in solid samples by DSA–FAAS was made by using a conventional air–acetylene flame. Between 0.05 and 1.5 mg of each test, sample was weighed directly into a small polyethylene vial connected to the device used for solid introduction into the flame. Test samples were introduced into the flame as a dry aerosol using a T-quartz cell set between the burner and the optical path. The T-quartz cell has a slit in the superior part by which the solid aerosol passes to the flame. A transient signal, evaluated as integrated absorbance, is produced and it is totally integrated in 2 s. Background signals always presented absorbance values less than 0.1. It was found a characteristic mass of 0.8 ng Cu and absolute limit of detection of 1.2 ng (3 s), or 1.2 μg g−1 if a sample mass of 1 mg was used. Optimized conditions for air flow rate, flame stoichiometry, and so on were established as well. No excessive grinding of the samples was needed and samples with particle of size less than 80 μm were used throughout. No statistical difference between the results from the proposed system and those obtained by sample digestion and determination by conventional FAAS was observed. With the proposed procedure, more than 50 test samples can be analyzed in 1 h and it can be easily adapted to conventional spectrometers for FAAS.  相似文献   

14.
This work presents the first application of the total-reflection X-ray fluorescence (TXRF) to the compositional study of magnetic ferrofluids. With the aims of validating the best analytical conditions and also, limitations of the TXRF in the compositional study of these materials, an alternative empirical method, based in the use of angle-dependence TXRF (AD-TXRF) measurements, is proposed. Three kinds of ferromagnetic nanoparticles, with different morphologies, have been studied. The techniques of inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES) have been used to validate the TXRF results. In contrast with the plasma techniques, the developed TXRF procedure need not of previous chemical acid digestion. Additionally, two procedures of magnetic nanoparticles synthesis, co-precipitation and laser-pyrolysis, have been checked for the contaminants trace metals Zn, Mn and Cr. It has been found that the method of laser-pyrolysis produces nanoparticles of higher purity.  相似文献   

15.
A true direct solid sampling electrothermal atomic absorption spectrometry method with Zeeman-effect background correction (Analytik Jena ZEEnit 60 AAS) was developed for the determination of As, Cd, Hg, Pb, Sb and Zn in powdered titanium dioxide of pharmaceutical, food and cosmetics grade. The interaction of the titanium matrix and graphite surface of the sample carrier boat in a transversely heated graphite tube atomizer was investigated. Conversion of titanium dioxide to interfering TiO2–TiC-liquid phase, running out the sampling boat, was observed at temperatures above 2000 °C. The temperature program was optimized accordingly for these volatile analytes in atomization and cleaning steps in order to prevent this interference and to prolong significantly the analytical lifetime of the boat to more than one thousand runs. For all elements, calibration by aqueous standard addition method, by wet-chemically analyzed samples with different content of analytes and/or by dosing one sample in different amounts, were proved as adequate quantification procedures. Linear dynamic calibration working ranges can be considerably expanded up to two orders of magnitude within one measurement run by applying three-field dynamic mode of the Zeeman background correction system. The results obtained by true direct solid sampling technique are compared with those of other independent, mostly wet-chemical methods. Very low limits of detection (3σ criterion) of true solid sampling technique of 21, 0.27, 24, 3.9, 6.3 and 0.9 ng g− 1 were achieved for As, Cd, Hg, Pb, Sb and Zn, respectively.  相似文献   

16.
Vapor phase treatment (VPT) is a pretreatment with hydrofluoric acid vapor to raise the sensitivity of total reflection X-ray fluorescence spectroscopy (TXRF) for trace metal analysis on silicon wafers. The International Organization for Standardization/Technical Committee 201/Working Group 2 (ISO/TC201/WG2) has been investigating the method to analyze 109 atoms/cm2 level of metallic contamination on the silicon wafer surface. Though VPT can enhance the TXRF signal intensity from the metallic contamination, it has turned out that the magnitude of the enhancement varies with the type of methods and the process conditions. In this study, approaches to increase TXRF intensity by VPT are investigated using a fuming chamber in an automated VPD instrument. Higher signal intensity can be obtained when condensation is formed on the sample surface in a humidifying atmosphere and with a decreasing stage temperature. Surface observations with SEM and AFM show that particles with ~ 4 μm in diameter are formed and unexpectedly they are dented from the top surface level.  相似文献   

17.
The elemental content of Cu, Fe and Zn in two human adenocarcinoma cell lines was investigated by total reflection X-ray fluorescence (TXRF) spectrometry. Cancer cells were sedimented directly to the quartz plates using a modified cytospin slide holder setup. Special glass stands and caps were also constructed to hold the quartz plates with the cells during the vapour-phase microwave assisted digestion. The method was validated by analysis of certified reference materials. The signal-to-noise ratio was optimized by washing the cells with different solutions. The technique was applied to the determination of Cu, Fe and Zn content of HT-29 and HCA-7 colorectal adenocarcinoma cell lines. Dry mass of the centrifuged cells were determined and the elemental analysis data reported for the two cell lines were referred either to cell numbers, to the total protein content or to the dry mass.  相似文献   

18.
A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3σ), based on ten atomizations of an unexposed filter, was 40 ng g− 1, corresponding to 0.12 ng m− 3 in the air for a typical air volume of 1440 m3 collected within 24 h. The limit of quantification was 150 ng g−1, equivalent to 0.41 ng m−3 in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g−1 and 381 ± 24 ng g−1. These values correspond to a mercury concentration in the air between < 0.12 ng m−3 and 1.47 ± 0.09 ng m−3. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.  相似文献   

19.
A new self-tuning single-mode-focused microwave technology has been evaluated in this work to perform the quantitative routine extraction of organometallic species from solid matrices of environmental interest. Species-specific isotope dilution analysis has been employed to better investigate the real influence of the microwave-assisted extractions on the final results. The advantages of such methodology in comparison with other established microwave units for the routine speciation analysis of organomercury and organotin compounds are discussed (such as the capability of using disposable glass vials, a self-tuning mode to provide an accurate control of the temperature and pressure inside of the vials, and the possibility of performing automated sequence of extractions with low sample size). The results obtained in this work demonstrated that such technology provides a fast and reliable quantitative extraction of the organometallic species in a wide range of extraction conditions even when the multi-elemental (Sn and Hg) species-specific determination is carried out.  相似文献   

20.
A radiofrequency (rf) glow-discharge (GD) ion source coupled to a commercial on-axis time-of-flight mass spectrometer (TOFMS) has been developed for the direct analysis of non-conducting samples. Different instrumental configurations of the rf-GD source, including the optional use of a sampler cone and the possibility of allowing electrical floating of the discharge, were evaluated first with a conducting sample. Higher ion signals were obtained when the GD was electrically floating and no sampler cone was used. A homogeneous glass was then analyzed using two different rf-GD configurations—with a sampler cone and discarding the use of the sampler cone. The atomic mass spectra obtained with the TOFMS using both configurations were compared. Analyte signals were systematically higher for the latest mode which avoids the sampler cone. The analytical capability of the proposed rf-GD–TOFMS system for the analysis of thick glasses, up to 6 mm, has been investigated in terms of sensitivity, isotopic ratio accuracy, and mass-resolving power. Different homogeneous glasses (including glasses as thick as 6 mm) have been analyzed and major and minor elements were detected. Isotope ratio accuracies of about ±1% and mass resolving powers of about 700 were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号