首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a probe of the short-range chemical and topological order, nuclear magnetic resonance (NMR) has proved useful to investigate the nanostructure of magnetic multilayers or granular systems and, in particular, to evaluate the nature, sharp or diffuse, of interfaces in such nanocomposites. These structural aspects are shortly reviewed in the paper. A larger emphasis is given to the magnetic properties that are accessed by the technique. As a first output of an NMR experiment in ferromagnets, the hyperfine field gives a direct insight on the local magnetization. Hence, for example, one can estimate the magnetization profile at a diffuse interface between a magnetic and nonmagnetic phase. In addition, NMR can probe selectively the magnetic anisotropy or exchange energy in different parts of a composite sample. Therefore NMR is a unique tool to investigate the correlation, at a local scale, between the nanostructure and the magnetic properties of a sample. For example, one can evidence the different magnetic hardness of the interface and bulk moments in multilayers, or of the magnetic clusters and alloyed regions in nanogranular alloys. Some relevant results are presented, which have been obtained in the course of investigations of Co-based multilayers, ultrathin films and granular systems.  相似文献   

2.
We report the existence of self-organization in wet granular media or slurries, mixtures of particles of different sizes dispersed in a lower density liquid. As in the case of dry granular mixtures, axial banding (alternating bands rich in small and large particles in a long rotating cylinder) and radial segregation (in quasi-2D containers) are observed in slurries. However, when compared with the dry counterpart axial segregation is significantly faster and the spectrum of outcomes is richer. Moreover, experiments with suitable fluids reveal, for the first time, the internal structure of axially segregated systems, something that up to now has been accessible only via magnetic resonance imaging experimentation.  相似文献   

3.
While nuclear magnetic resonance diffusion experiments are widely used to resolve structures confining the diffusion process, it has been elusive whether they can exactly reveal these structures. This question is closely related to x-ray scattering and to Kac's "hear the drum" problem. Although the shape of the drum is not "hearable," we show that the confining boundary of closed pores can indeed be detected using modified Stejskal-Tanner magnetic field gradients that preserve the phase information and enable imaging of the average pore in a porous medium with a largely increased signal-to-noise ratio.  相似文献   

4.
We study the emergence of shear thickening in dense suspensions of non-Brownian particles. We combine local velocity and concentration measurements using magnetic resonance imaging with macroscopic rheometry experiments. In steady state, we observe that the material is heterogeneous, and we find that the local rheology presents a continuous transition at low shear rate from a viscous to a shear thickening, Bagnoldian, behavior with shear stresses proportional to the shear rate squared, as predicted by a scaling analysis. We show that the heterogeneity results from an unexpectedly fast migration of grains, which we attribute to the emergence of the Bagnoldian rheology. The migration process is observed to be accompanied by macroscopic transient discontinuous shear thickening, which is consequently not an intrinsic property of granular suspensions.  相似文献   

5.
A complex sum method of quantifying the magnetic susceptibility of a long, narrow cylinder embedded in a uniform medium has been developed. The radius of the cylinder can be as small as one pixel. The susceptibility inside the object is extracted from the magnetic resonance complex images, using two concentric circles around the axis of the cylinder. The numerical simulations of this complex sum method are in good agreement with the phantom studies. Specifically, the method was tested with a susceptibility difference of -9 ppm to mimic air/tissue interface in the human body at 1.5 T with an echo time of 5 ms. Phantom studies using an air-filled cylinder in a solidified gel have shown that the susceptibility of the gel cannot be determined by the usual least-squares-fit method but can be determined by the complex sum method to within 5-10% of the expected value.  相似文献   

6.
A novel method of determining median pore size and pore size distributions as a function of spatial position inside a porous sample is described. Pore sizes have been measured with 1-, 2- and 3-dimensional spatial resolution, using NMR cryoporometry in conjunction with magnetic resonance imaging techniques. The method is suitable for pore diameters in the range of 30 Å to over 2000 Å pore diameter, and is based on the technique of freezing a liquid in the pores and measuring the melting temperature by nuclear magnetic resonance. Since the melting point is depressed for crystals of small size, the melting point depression gives a measurement of pore size.  相似文献   

7.
Two-dimensional spatial distribution of the microwave field in a conductive coal cylinder has been obtained (skin effect visualization) by means of continuous wave electron paramagnetic resonance imaging technique. The algorithm we suggested previously and developed further here has been used. This method is based on the idea that spectra recorded under negative and positive magnetic field gradients are needed to obtain a single complex projection.  相似文献   

8.
We derive the formalism to obtain spatial distributions of collisional correlation times for macroscopic particles undergoing granular flow from pulsed gradient spin echo nuclear magnetic resonance diffusion data. This is demonstrated with an example of axial motion in the shear flow regime of a 3D granular flow in a horizontal rotating cylinder at one rotation rate.  相似文献   

9.
Direct multinuclear imaging of rigid solids has been performed using the conventional two-pulse spin-echo pulse sequence and liquids magnetic resonance imaging (MRI) hardware. Two-dimensional 27Al and 51V images of an Al2O3-V2O5-glass composite sample and 11B, 23Na, 27Al and 29Si images of glass have been detected, extending the range of nuclei and solid materials that can be studied by this approach. For a spinning cylinder packed with Al2O3 powder, quantitative velocity maps have been obtained by directly detecting the 27Al nuclear magnetic resonance signal of the solid phase. The two velocity components in the imaging plane transverse to the rotation axis have been mapped using the three-pulse stimulated echo sequence. Some possibilities to improve sensitivity in the MRI experiments on rigid solids have been considered. In particular, inversion of the satellite transitions by a double frequency sweep adiabatic passage has led to a signal enhancement by a factor of two in 27Al MRI of a glass sample despite a short repetition time (0.5 s) of the imaging pulse sequence. Authors' address: Igor V. Koptyug, International Tomography Center, Russian Academy of Sciences, 3A Institutskaya ulitsa, Novosibirsk 630090, Russian Federation  相似文献   

10.
A narrow-gap, temperature-controlled Couette flow rheometer has been developed to study fluid velocities within the annular gap between two concentric cylinders by nuclear magnetic resonance (NMR) imaging and velocimetry. Alternative pulsed-field-gradient-based nuclear magnetic resonance imaging strategies which may be used for measurement of velocity within the Couette flow device have been evaluated. These include two-dimensional (2-D) imaging techniques with acquisition times of several minutes and a one-dimensional (1-D) projection method which exploits the symmetry of the device to reduce overall measurement time to less than 1 min. Velocity measurements made using each technique are presented for a Newtonian fluid undergoing Couette flow at shear rates of approximately 20 and 60 s–1.  相似文献   

11.
The introduction of arterial spin labelling (ASL) techniques in magnetic resonance imaging (MRI) has made feasible a non-invasive measurement of the cerebral blood flow (CBF). However, to date, the low signal-to-noise ratio of ASL gives us no option but to repeat the acquisition to accumulate enough data in order to get a reliable signal. The perfusion signal is then usually extracted by averaging across the repetitions. But the sample mean is very sensitive to outliers. A single incorrect observation can therefore be the source of strong detrimental effects on the perfusion-weighted image estimated with the sample mean.  相似文献   

12.
We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits shear thickening. From magnetic resonance imaging velocimetry and classical rheology it follows that as a function of the applied stress the suspension is first solid (yield stress), then liquid, and then solid again when it shear thickens. For the onset of thickening we find that the smaller the gap of the shear cell, the lower the shear rate at which thickening occurs. Shear thickening can then be interpreted as the consequence of dilatancy: the system under flow wants to dilate but instead undergoes a jamming transition because it is confined, as confirmed by measurement of the dilation of the suspension as a function of the shear rate.  相似文献   

13.
Growing interest in magnetic resonance imaging (MRI) at ultra-low magnetic fields (ULF, approximately muT fields) has been motivated by several advantages over its counterparts at higher magnetic fields. These include narrow line widths, the possibility of novel imaging schemes, reduced imaging artifacts from susceptibility variations within a sample, and reduced system cost and complexity. In addition, ULF NMR/MRI with superconducting quantum interference devices is compatible with simultaneous measurements of biomagnetic signals, a capability conventional systems cannot offer. Acquisition of MRI at ULF must, however, account for concomitant gradients that would otherwise result in severe image distortions. In this paper, we introduce the general theoretical framework that describes concomitant gradients, explain why such gradients are more problematic at low field, and present possible approaches to correct for these unavoidable gradients in the context of a non-slice-selective MRI protocol.  相似文献   

14.
A high temperature magnetic resonance compatible furnace for real time in situ monitoring of materials, processes, and chemical reactions with magnetic resonance imaging and spectroscopy is described. Design issues are analyzed. Example applications are demonstrated with a time sequence of proton images of the binder burnout in a porous green ceramic cylinder containing polyethylene glycol binder at 200 degrees C, and 7Li images of the molten salt LiCl at 700 degrees C.  相似文献   

15.
A cross-platform development environment for nuclear magnetic resonance (NMR) experiments is presented. It allows rapid prototyping of new pulse sequences and provides a common programming interface for different system types. With this object-oriented interface implemented in C++, the programmer is capable of writing applications to control an experiment that can be executed on different measurement devices, even from different manufacturers, without the need to modify the source code. Due to the clear design of the software, new pulse sequences can be created, tested, and executed within a short time. To post-process the acquired data, an interface to well-known numerical libraries is part of the framework. This allows a transparent integration of the data processing instructions into the measurement module. The software focuses mainly on NMR imaging, but can also be used with limitations for spectroscopic experiments. To demonstrate the capabilities of the framework, results of the same experiment, carried out on two NMR imaging systems from different manufacturers are shown and compared with the results of a simulation.  相似文献   

16.
This paper describes a variant of time-of-flight magnetic resonance (MR) imaging that provides a method of measuring the inherent mixing in a fluidized bed without the introduction of tracer particles. The modifications to conventional time-of-flight imaging enable the measurement of the axial mixing of a precisely controlled initial particle distribution, thereby providing measurements suitable for a direct comparison with models of solids mixing in granular systems. The imaging sequence is applied to characterize mixing, over time scales of 25-1000 ms, in a gas-fluidized bed of Myosotis seed particles; mixing over short timescales, inaccessible using conventional tracer techniques, is studied using this technique. The mixing pattern determined by this pulse sequence is used in conjunction with MR velocity images of the motion of the particles to provide new insight into the mechanism of solids mixing in granular systems.  相似文献   

17.
A magnetic resonance imaging method is described for measuring the magnetic susceptibility difference between two homogeneous macroscopic compartments in contact with each other. A boundary condition is derived for the interface of the two compartments. This boundary condition predicts that across the interface there is a resonant frequency jump, which is a function of interfacial orientation relative to B0 field and the difference in susceptibility of the two sides. Based on this relationship, the magnetic susceptibility difference between two materials can be obtained from MR gradient echo imaging using signals from both sides in the vicinity of the boundary. This method is demonstrated by solution phantom experiments.  相似文献   

18.
The proton motion in bulk and highly drawn fiber polyamide-6 has been studied by field cycling relaxometry and proton line shape measurements. The dips in theT 1 dispersion allowed for the determination of the14N quadrupole coupling tensor. The fact that only one set of14N nuclear quadrupole resonance lines, has been found shows that all N-H groups in nylon-6 are H-bonded. A striking difference in the main line width transition and the low-frequency molecular dynamics has been observed between a slowly cooled “bulk” polyamide-6 sample and a rapidly cooled and highly drawn “fiber” sample by wide line proton nuclear magnetic resonance line shape and spin-lattice relaxation time measurements. This result is consistent with the picture that shearing melt processing procedures, such as spinning, plant stable and long-lived crystallization nuclei into the amorphous phase which impose additional motional constraints on the surroundings and inhibit the self-diffusion process.  相似文献   

19.
磁共振分子影像技术   总被引:4,自引:0,他引:4  
雷皓 《波谱学杂志》2003,20(2):173-185
磁共振分子影像技术是磁共振成像研究领域中最新的发展方向,它是利用磁共振成像为手段来无创伤地研究活体条件下生物细胞内的正常或病理状态下的分子过程的技术. 目前磁共振分子影像技术还处于其发展的初级阶段,但它在临床医学和基础研究中都具有非常广阔的应用前景,因而发展迅速. 文章综述了近几年来国际上磁共振分子影像技术的发展概况,并简要介绍了几类磁共振分子影像常用技术和其中所用到的分子探针.  相似文献   

20.
《Magnetic resonance imaging》1998,16(9):1139-1144
The use of texture analysis in magnetic resonance imaging requires the availability of texture test objects for use in standardisation of in vivo measurement. A series of such objects of varying texture has been developed using reticulated foam, which has an open pore structure. The texture properties of these foams have been compared with in vivo brain and the ability of texture analysis to discriminate the different porosities of foam and brain (white matter) demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号