首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Blood is a physiological substance with multiple water compartments, which contain water-binding proteins such as hemoglobin in erythrocytes and albumin in plasma. Knowing the water transverse (R2) relaxation rates from these different blood compartments is a prerequisite for quantifying the blood oxygenation level-dependent (BOLD) effect. Here, we report the Carr-Purcell-Meiboom-Gill (CPMG) based transverse (R2CPMG) relaxation rates of water in bovine blood samples circulated in a perfusion system at physiological temperature in order to mimic blood perfusion in humans. R2CPMG values of blood plasma, lysed packed erythrocytes, lysed plasma/erythrocyte mixtures, and whole blood at 3 T, 7 T, 9.4 T, 11.7 T and 16.4 T were measured as a function of hematocrit or hemoglobin concentration, oxygenation, and CPMG inter-echo spacing (τcp). R2CPMG in lysed cells showed a small τcp dependence, attributed to the water exchange rate between free and hemoglobin-bound water to be much faster than τcp. This was contrary to the tangential dependence in whole blood, where a much slower exchange between cells and blood plasma applies. Whole blood data were fitted as a function of τcp using a general tangential correlation time model applicable for exchange as well as diffusion contributions to R2CPMG, and the intercept R20blood at infinitely short τcp was determined. The R20blood values at different hematocrit and the R2CPMG values of lysed erythrocyte/plasma mixtures at different hemoglobin concentration were used to determine the relaxivity of hemoglobin inside the erythrocyte (r2Hb) and albumin (r2Alb) in plasma. The r2Hb values obtained from lysed erythrocytes and whole blood were comparable at full oxygenation. However, while r2Hb determined from lysed cells showed a linear dependence on oxygenation, this dependence became quadratic in whole blood. This possibly suggests an additional relaxation effect inside intact cells, perhaps due to hemoglobin proximity to the erythrocyte membrane. However, we cannot exclude that this is a consequence of the simple tangential model used to remove relaxation contributions from exchange and diffusion. The extensive data set presented should be useful for future theory development for the transverse relaxation of blood.  相似文献   

2.
Myo-inositol is a strongly coupled system and resonates at four chemical shift positions. At 1.5 T, only the singlet component at 3.57 ppm is detected. However, at 3 T this resonance is resolved into its components at 3.55 ppm and 3.61 ppm. Due to the increased spectral resolution and signal-to-noise ratio, it is anticipated that the quantification of myo-inositol should improve at 3 T. Using data from normal controls and the LCmodel quantification procedure, we found that the quantification precision, reproducibility and detection sensitivity of myo-inositol is significantly better at 3 T relative to 1.5 T.  相似文献   

3.
4.

Purpose

Time-of-flight (ToF) and phase contrast (PC) magnetic resonance angiographies (MRAs) are noninvasive applications to depict the cerebral arteries. Both approaches can image the cerebral vasculature without the administration of intravenous contrast. Therefore, it is used in routine clinical evaluation of cerebrovascular diseases, e.g., aneurysm and arteriovenous malformations. However, subtle microvascular disease usually cannot be resolved with standard, clinical-field-strength MRA. The purpose of this study was to compare the ability of ToF and PC MRA to visualize the cerebral arteries at increasing field strengths.

Materials and Methods

The Institutional Review Board-approved study included eight healthy volunteers (age: 36±10 years; three female, five male). All subjects provided written informed consent. ToF and PC MRAs were obtained at 1.5, 3 and 7 T. Signal intensities of the large, primary vessels of the Circle of Willis were measured, and signal-to-noise ratios were calculated. Visualization of smaller first- and second-order branch arteries of the Circle of Willis was also evaluated.

Results

The results show that both ToF and PC MRAs allow the depiction of the large primary vessels of the Circle of Willis at all field strengths. Ultrahigh field (7 T) provides only small increases in the signal-to-noise ratio in these primary vessels due to the smaller voxel size acquired. However, ultrahigh-field MRA provides better visualization of the first- and second-order branch arteries with both ToF and PC approaches. Therefore, ultrahigh-field MRA may become an important tool in future neuroradiology research and clinical care.  相似文献   

5.
An analysis of the experimental data obtained by holographic interferometry in our work [1] makes it possible to explain most of the observed specific features of the structure and evolution of the plasma sheets developing in a two-dimensional magnetic field with a null line in a plasma with a low initial degree of ionization (≈10−4). The following two processes are shown to play a key role here: additional gas ionization in an electric field and the peculiarities of plasma dynamics in a current sheet expanding in time.  相似文献   

6.
Deep brain stimulation (DBS) is used increasingly in the field of movement disorders. The implanted electrodes create not only a prior risk to patient safety during MRI, but also a unique opportunity in the collection of functional MRI data conditioned by direct neural stimulation. We evaluated MRI-related heating for bilateral neurostimulation systems used for DBS with an emphasis on assessing clinically relevant imaging parameters. Magnetic resonance imaging was performed using transmit body radiofrequency (RF) coil and receive-only head RF coil at various specific absorption rates (SARs) of RF power. In vitro testing was performed using a gel-filled phantom with temperatures recorded at the electrode tips. Each DBS electrode was positioned with a single extension loop around each pulse generator and a single loop at the "head" end of the phantom. Various pulse sequences were used for MRI including fast spin-echo, echo-planar imaging, magnetization transfer contrast and gradient-echo techniques. The MRI sequences had calculated whole-body averaged SARs and local head SARs ranging from 0.1 to 1.6 W/kg and 0.1 to 3.2 W/kg, respectively. Temperature elevations of less than 1.0 degrees C were found with the fast spin-echo, magnetization transfer contrast, gradient-echo and echo-planar clinical imaging sequences. Using the highest SAR levels, whole-body averaged, 1.6 W/kg, local exposed-body, 3.2 W/kg, and local head, 2.9 W/kg, the temperature increase was 2.1 degrees C. These results showed that temperature elevations associated with clinical sequences were within an acceptable physiologically safe range for the MR conditions used in this evaluation, especially for the use of relatively low SAR levels. Notably, these findings are highly specific to the neurostimulation systems, device positioning technique, MR system and imaging conditions used in this investigation.  相似文献   

7.
Quan G  Zhang L  Guo Y  Liu M  Wang J  Wang Y  Dong B  Liu A  Zhang J  Han Y 《Cryo letters》2007,28(2):95-108
Cryopreservation with impermeable protectants has great significance on storage of human red blood cells. It has become feasible to use glycerol free cryopreservation for human red blood cells. This study focuses on the effect of intracellular trehalose or glucose on human red blood cells cryopreserved in the presence of polymer. Red blood cells were cryopreserved for 48 h-72 h at -80 degrees C. The data showed that the loading efficiency of glucose was significantly higher than that of trehalose, but trehalose loading process induced more hemolysis than glucose loading process. Compared with the other groups, the combination of intracellular glucose, PVP, and human serum albumin can significantly decrease the percent hemolysis after cryopreservation (P<0.01). However, the percent hemolysis induced by intracellular trehalose was less than that induced by extracellular trehalose, but the difference was not significant (P<0.05). The adenosine 5'-triphosphate (ATP) level and 2,3-diphosphoglycerate (2,3-DPG) level of cryopreserved red blood cells were significantly less than those of fresh red blood cells. However, sugars can provide certain protection for ATP and 2, 3-DPG compared with red blood cells cryopreserved in the absence of sugars. The protection of glucose on the metabolic function was more than that of trehalose. Cryopreservation can increase the percentage of cells with exposed phosphatidylserine (PS), but the ability of trehalose to maintain PS normal distribution is higher than that of glucose. Furthermore, intracellular sugars can protect membrane integrity of cryopreserved red blood cells, although a small portion of cells appeared spherocytic or echinocytic shape. Finally, most membrane proteins of cryopreserved red blood cells were similar to the membrane proteins of fresh red blood cells, but trehalose can result in loss of glyceraldehyde phosphate dehydrogenase (GAPD) and peroxiredoxin 2. In conclusion, it is feasible to cryopreserve red blood cells using polymer, human albumin and sugars as main protectants. The cryoprotective effect of glucose may be better than that of trehalose in the presence of PVP and human serum albumin, because sugar loading process causes more cell injuries in case of trehalose compared to glucose, and these injuries in turn manifest themselves during subsequent cryopreservation and thawing. In the future, finding an approach to decrease the injuries during trehalose loading process still is critical.  相似文献   

8.
Two T2-independentJ-difference lactate editing schemes for the PRESS magnetic resonance spectroscopy localization sequence are introduced. The techniques, which allow for simultaneous acquisition of the lactate doublet (1.3 ppm) and edited singlets upfield of and including choline (3.2 ppm), exploit the dependence of the in-phase intensity of the methyl doublet upon the time interval separating two inversion (BASING) pulses applied to its coupling partner after initial excitation. Editing method 1, which allows for echo times TE =n/J(n= 1, 2, 3, …), alters the BASING carrier frequency for each of two cycles so that, for one cycle, the quartet is inverted, whereas, for the other cycle, the quartet is unaffected. Method 2, which also provides water suppression, allows for editing for TE > 1/Jby alternating, between cycles, the time interval separating the inversion pulses. Experimental results were obtained at 1.5 T using a Shinnar Le–Roux-designed maximum phase inversion pulse with a filter transition bandwidth of 55 Hz. Spectra were acquired from phantoms andin vivofrom the human brain and neck. In a neck muscle study, the lipid suppression factor, achieved partly through the use of a novel phase regularization algorithm, was measured to be over 103. Spectra acquired from a primary brain and a metastatic neck tumor demonstrated the presence of lactate and choline signals consistent with abnormal spectral patterns. The advantages and limitations of the methods are analyzed theoretically and experimentally, and significance of the results is discussed.  相似文献   

9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号