首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cone penetrometer is a simple versatile device which is widely used to monitor the strength of a soil in terms of its resistance to the penetration of a standard cone. The soil penetration resistance is a function of soil moisture content, soil specific weight and soil type. The soil type is characterised by means of a clay ratio which is the ratio of the clay content of the soil to the content of silt and sand.Based on the classical bearing capacity theories for strip foundations, a general cone penetration resistance equation is developed to represent the variability of cohesion and friction angle by means of soil type and moisture content. The empirical relationship is shown to give an accurate prediction of the cone penetration resistance for a wide range of soils from a loamy sand to a heavy clay (clay ratios 0.10–1.60) and over a wide spectrum of soil moisture contents from 10 to 65% w/w.  相似文献   

2.
The behaviour of soils under a vehicle wheel was determined by measuring the density, moisture content, and the position of the data point. From the several thousands of data points, statistical models were established for dry density in terms of external pressure, moisture content, and position. The effect of slip was also obtained at the required situations. Separate models were determined for sand, sandy loam, loamy sand, and clay. For every soil type, there exists an optimum moisture content for worst compaction. Considering this, models were obtained for various categories.  相似文献   

3.
Experiments were conducted in a laboratory soil bin to evaluate the performance of coated floats in different soils. Two coating materials were studied, namely enamel and Teflon, and three soil types, namely clay, loam and sandy soil were used for testing. The forces required to overcome the drag of the floats and pull them over the soil surface were measured. The normal loads were varied to 25, 44 and 64 N. The effect of moisture content (db) was evaluated by varying the soil moisture from 21.2 to 62.4% for clay soil, 16.6 to 36.1% for loam soil and 0.7 to 13.8% for sandy soil. All tests were conducted at a constant speed of 0.20 m/s. The performance of the enamel coated float was superior to Teflon and uncoated floats in all soil conditions. In clay and loam soils, the drag force increased initially until the soil moisture content reached the plastic limit. The drag forces showed a decreasing trend once soil moisture exceeded the plastic limit. In sandy soil, the drag force increased with increase in moisture content. The overall reductions for the enamel coated float compared to uncoated float were from 4 to 64% in clay soil, 16 to 46% in loam soil and 26 to 45% in sandy soil. Besides this superior performance, the enamel coated float compared to the other floats showed excellent resistance to wear due to abrasion and superior scouring.  相似文献   

4.
Research was conducted to quantify the effect of tire variables (section width, diameter, inflation pressure); soil variables (soil moisture content, initial cone index, initial bulk density); and external variables (travel speed, axle load, number of tire passes) on soil compaction and to develop models to assess compaction in agricultural soils. Experiments were conducted in a laboratory soil bin at the Asian Institute of Technology in three soils, namely: clay soil (CS), silty clay loam soil (SCLS), and silty loam soil (SLS). A dimensional analysis technique was used to develop the compaction models. The axle load and the number of tire passes proved to be the most dominant factors which influenced compaction. Up to 13% increase in bulk density and cone index were observed when working at 3 kN axle load in a single pass using a 8.0–16 tire. Most of the compaction occurred during the first three passes of the tire. It was also found that the aspect ratio, tire inflation pressure and soil moisture content have significant effect on soil compaction. The initial cone index did not show significant effect. The compaction models provided good predictions even when tested with actual field data from previous studies. Thus, using the models, a decision support system could be developed which may be able to provide useful recommendations for appropriate soil management practices and solutions to site-specific compaction problems.  相似文献   

5.
The relation between forces applied to the soil and the resultant soil reaction was studied in dry clay soils under a quasi-static condition. As a tine advanced in dry compact clay soils at 5.2% dry basis moisture content, masses of soil collapsed one by one in front of the tine. The horizontal and vertical components of soil resistance measured were cyclic and in phase, with distinct peak and trough values. The peak values and trough values indicated the soil stress conditions before and immediately after each failure occurred. The frequency of failure depended on the size of the tine. The magnitude of the peak values depended on level of compaction and trough values on density of collapsed mass. The paper presents the details of observations.  相似文献   

6.
A motorized rheometer was developed for determining soil visco-plastic parameters that works on the principle of torsional shear applied to a standard vane with controlled strain rate. Rheological measurements were carried at different soil moisture contents (10%, 13%, 17% and 20% dry basis (gravimetric)) and soil compaction levels (100, 150, 200, 300 and 400 kPa) to find their effects on soil viscosity and yield strength. The values of viscosity of the clay loam soil (29% clay, 24% silt and 47% sand) were found to spread in the range of 53–283 kPa s, and yield stress variation had a span of 4–28 kPa. Increase in soil compaction was accompanied by a sharp increase in soil viscosity, while moisture content affected soil viscosity negatively. Effect of both these parameters was statistically significant (95% confidence interval). Yield stress was positively related to soil compaction and the effect was statistically significant. However, it was negatively related to moisture content and the effect was not statistically significant for the levels of moisture content tested.  相似文献   

7.
通过对南京地区大量粘土和粉质粘土样品热导率值的测试,分析了土体热导率与其含水量、孔隙比的相关关系。对影响土体导热值的因素作了详细分析,提出了根据土体含水量、孔隙比值计算土体热导率的经验计算公式。  相似文献   

8.
Effect of wetting and drying on soil physical properties   总被引:3,自引:0,他引:3  
Agricultural soils are subject to seasonal wetting and drying cycles. Effect of drying stress, as influenced by one cycle of wetting and drying, on physical properties of a clay–loam soil was investigated in the laboratory. The physical properties studied were soil bulk density, cone penetration resistance, shear strength, adhesion and aggregate size and stability. Three drying stress treatments were made by wetting air-dried soil of initial moisture content of 12% (on dry weight basis) to three different higher moisture contents, namely 27, 33 and 40%, and then drying each of them back to their original moisture content of 12%. Thus, the soil was subjected to three different degrees of drying stress. The results showed that the soil strength indicated by cone penetration resistance and cohesion, and soil aggregate size, increased with the degree of drying stress. However, the soil bulk density did not change significantly with the drying stress.  相似文献   

9.
The effects of low-to-medium slip, lug spacing and moisture content on lug forces in clay soil were investigated in a laboratory soil bin with the help of two model lugs. Perpendicular and radial soil reactions on the lug were measured and they were converted to lug pull and lift forces. The lug slip was varied from 5 to 10, 15, 20 and 25%. The measurements were conducted in clay soils with 6.3, 27.4 and 51% soil moisture contents. The lug spacing was varied from 20° to 30° and 40°. The perpendicular, pull and lift forces increased after lug entry into the soil and, after attaining a certain peak value, they decreased and reached a zero value at lug exit. The increase in lug slip from 5 to 25% caused an increase in lug forces on both lugs. The increase in the soil moisture content from 6.3 to 27.6% caused increase in lug forces on both lugs, but further increase in moisture content to 51% decreased the lug forces. Lug spacing showed a significant effect on lug forces produced by the succeeding lug. The increase in lug slip increased the lug forces at any given lug spacing and moisture content.  相似文献   

10.
Variable load test data were used to evaluate the applicability of an existing forestry tire traction model for a new forestry tire and a worn tire of the same size with and without tire chains in a range of soil conditions. The clay and sandy soils ranged in moisture content from 17 to 28%. Soil bulk density varied between 1.1 and 1.4g cm−3 with cone index values between 297 and 1418 kPa for a depth of 140 mm. Two of the clay soils had surface cover or vegetation, the other clay soil and the sandy soil had no surface cover. Tractive performance data were collected in soil bins using a single tire test vehicle with the tire running at 20% slip. A non-linear curve fitting technique was used to optimize the model by fitting it to collected input torque data by modifying the coefficients of the traction model equations. Generally, this procedure resulted in improved prediction of input torque, gross traction ratio and net traction ratio. The predicted tractive performance using the optimized coefficients showed that the model worked reasonably well on bare, uniform soils with the new tire. The model was flexible and could be modified to predict tractive performance of the worn tire with and without chains on the bare homogeneous soils. The model was not adequate for predicting tractive performance on less uniform soils with a surface cover for any of the tire treatments.  相似文献   

11.
Studies were conducted for the establishment of safe axle loads for sugarcane hauling vehicles beyond which detrimental soil compaction would be induced. The treatments involved running a loaded test vehicle in field strips previously chosen at random. Safe loads were established by testing the level of significance of the difference in induced soil compaction between treated and non-treated sections. Working under soil moisture contents of 21.4–27.1% (dry basis), safe axle loads for two 18.4 × 30 tires were found to be 55.6 and 60.0 kN for sandy clay loam and sandy loam soils with initial dry bulk density about 1.434 g/cm3. These corresponded to ground contact pressures of 111 and 120 kPa, respectively.  相似文献   

12.
Determination of the soil pressure distribution around a cone penetrometer   总被引:2,自引:0,他引:2  
The objective of this paper was to investigate the pressure distribution around a cone penetrometer using a pressure sensing mat under laboratory conditions. The investigation was conducted under (1) constrained conditions using cylindrical split pipe molds and (2) unconstrained conditions using a soil box. These tests were conducted in Capay clay and Yolo loam soil containing two different moisture conditions and two compaction levels.In the constrained tests, a maximum radial pressure of 111 kPa was observed in the Capay clay soil with 3.4–4.3% d.b. moisture content and three blows of compaction (cone index value of 2040 kPa) when using the 41 mm diameter split pipe mold. These pressure levels decreased to 82 and 22 kPa, respectively, when 65 and 88 mm diameter molds were used. In both the Capay clay and Yolo loam tests, the average radial pressure and average cone index values showed similar trends.In the unconstrained tests, a maximum pressure of 9.0 kPa was observed in the Capay clay with 4.5% d.b. moisture content and three blows of compaction (cone index value of 550 kPa) at a horizontal distance of 25.4 mm from the vertical axis of the cone penetrometer and minimum pressure levels in the range of 0.2–0.3 kPa when the horizontal distance of the penetrometer was in the range of 56.8–66 mm. The pressure levels are much smaller than the ones obtained in the constrained tests and may suggest that the pressure distribution under field conditions is small at a distance of 25.4 mm or higher from the tip of the cone.The experimental data were statistically analyzed to identify significant factors. The results of the analysis for the constrained test indicated that the mold diameter and number of blows significantly increased the pressure readings within the soil mass. Increasing the mold diameter led to a decrease in the average radial pressure and increasing the number of blows contributed to an increase in the average radial pressure. In the unconstrained test, the average radial pressure distribution at a given point were significantly influenced by the horizontal distance of the point from the vertical axis passing through the center of the penetrometer shaft, soil type, and soil moisture content. Higher pressure values were obtained in the Capay clay tests compared to the Yolo loam tests. In all cases, the pressure levels were greater for the drier soil than for the moist soil.  相似文献   

13.
含粘粒砂土抗液化性能的试验研究   总被引:3,自引:0,他引:3  
通过对含粘粒砂土所作的试验研究, 包括: 粘粒矿物成分不同、粘粒含量不同的重塑土样所作的室内动三轴试验; X光衍射试验, 试验结果对比分析后, 得出了含粘粒砂土抗液化性能的特性。并得出以下结论: (1)粘粒矿物成分不同, 也引起砂土动力稳定性的变化; (2 )动剪应力强度与粘粒含量并非呈单调增加关系, 而呈抛物线型, 并给出回归方程; (3)含粘粒的砂土, 其抗液化能力最低点总是在粘粒含量 8.5~ 9.5 %之间。  相似文献   

14.
This paper discusses the loading of a typical central Anatolian soil by the most commonly used corn and wheat production agricultural equipment. It further describes the effect that loading and soil conditions have on soil strength, namely compaction, and proposes techniques for minimizing undesired soil compaction. Experiments were carried out on a typical central Anatolian medium-textured imperfectly drained clay loam soil (Cambisol). Three different tillage methods and subsequently the same field operations were used for each rotation. Shear strength, penetration resistance, bulk density and moisture variations were detected in four sampling periods at each rotation. Tillage reduced the soil strength with the mouldboard plough causing the greatest loosening. However, natural processes and the vehicular traffic caused the soil to be re-compacted to about the same values as before. In any of the cases the obtained parameters did not exceed the critical values for plant growth except the penetration resistance in the 20–30 cm depth layer during corn production.  相似文献   

15.
Twenty-five treatments consisting of three vehicle contact pressures, 62, 41 and 31 kPa (0.63, 0.42, 0.32 kg/cm2), four numbers of tractor passes (1, 5, 10, 15,) before and after seeding groups, and a control of zero traffic were used to study the effect of soil compaction on corn plant root growth and distribution in a Ste. Rodalie clay soil. The average dry bulk density values for 0–20 cm depths measured during the season varied from a minimum of 0.89 g/cm3 to a maximum of 1.12 g/cm3 depending on the severity of the treatment. Root distribution maps were obtained for all the treatments by field measurements coupled with root washing methods. An average root density of 5.7 mg/g of soil in an uncompacted control plot was reduced to less than 2 mg/g in a plot with 15 passes of 0.63 kg/cm2 contact pressure. Soil penetration resistance values in various plots were compared, and a statistical model was obtained in terms of the traffic treatments, soil moisture content and depth. Yield reductions and penetration resistance were compared to root distrubution density results.  相似文献   

16.
Effect of enamel coating on the performance of a tractor drawn rotavator   总被引:1,自引:0,他引:1  
The performance of a rotavator equipped with uncoated and enamel-coated tines was evaluated in clay soil at an average soil moisture content of 21.6% (db). The power requirement and quality of work was compared for uncoated and enamel-coated tines under similar working conditions. The enamel coating affected the power requirement. A maximum saving in power of 22% was obtained at 1.5 km/h speed during the first pass of enamel-coated tines compared to that of uncoated tines. The power requirement of the enamel-coated tines was higher than the uncoated tines in the second pass, but it gave better soil inversion. The quality of work in terms of bulk density, cone index and mean weight diameter of soil mass were almost the same for both tines. Soil inversion by enamel-coated tines was higher than the uncoated tines by 30 and 50% during the second and third pass, respectively. This might be the reason for the slightly higher power requirement for the enamel-coated tines during the second and third passes. The rate of wear of enamel-coated tines was found to be less than that of the uncoated tines. ©  相似文献   

17.
Using cone index as an indication of soil strength, empirical equations are developed in accordance with soil mechanics theory to relate soil moisture content to plough draught. The plough draught equation comprises a quasi-static component dependent on cone index and a dynamic component which is a function of the soil specific weight, plough speed and mouldbard tail angle. It is further argued that the cohesive and frictional components of the cone penetration resistance can be predicted by means of a simple equation comprising a reciprocal function of the square of the soil moisture content and a linear function of the soil specific weight. The cone index equation explained 98% of the experimental data for threthree soils over a wide range of moisture contents. These empirical equations, together with a soil moisture model, provide a method of predicting plough draught directly from soil and meteorological data.  相似文献   

18.
本文依据工程需要, 采取淮河大堤老应段的原状和扰动土样, 在室内对堤体及堤基土的剪切蠕变和拉伸蠕变特性进行了试验研究。粘土的蠕变剪切强度远低于瞬时剪切强度, C∞值仅是C值的40%左右;相同含水条件下粘土的长时抗拉强度大于瞬时抗拉强度, 长时拉伸应变量远大于瞬时拉伸应变量, 约为2倍。  相似文献   

19.
为研究冻结粉质粘土强度和变形特性,以沈阳地铁DK11+395联络通道处人工冻结粉质粘土为研究对象,通过冻土三轴剪切试验,研究了不同试验条件下冻结粉质粘土的强度和变形特性。试验结果表明:围压、温度和试件初始含水量是影响冻结粉质粘土强度和变形的主要因素。冻结粉质粘土偏应力-应变曲线呈应变硬化型,其破坏强度和切线弹性模量随围压和试件初始含水量的增加而增大,随温度的升高而减小,破坏偏应力比Rf取值在0.79~0.96之间。基于试验数据建立了以上述三因素为影响因子的冻结粉质粘土Duncan-Chang模型。通过回归分析,建立了模型参数a和b与围压、初始含水量和温度之间的线性回归公式。将依据模型计算的偏应力-应变曲线与对比试验曲线相比较,发现两者具有较好的吻合程度,说明建立的模型能够准确反映围压、初始含水量和温度等条件对冻结粉质粘土强度和变形的影响规律。上述研究成果为冻结粉质粘土强度和变形特性的研究提供了参考,为人工冻结法施工提供了指导,具有重要的理论意义和工程应用价值。  相似文献   

20.
A 52 plot experiment was performed during the growing season of 1977 in a Ste. Rosalie clay soil, using a randomized complete-block design with 13 treatments of machinery traffic within each of four blocks. Three vehicle contact pressures, four numbers of tractor passes, and a control of zero traffic were used to relate the growth and yield variables to wheel traffic and the resulting soil compaction. The number of days required for (a) plant emergence, (b) tasselling, and (c) silking were minimum in moderately compacted plots. The plant growth rate monitored at 41, 54, 68, and 105 days from the seeding time was different from plot to plot. Growth models at different times of the season were derived in terms of the wheel traffic variables, and plant and ear moisture content variation with traffic treatment was investigated. Yield and ear yield increased with increases in machine contact pressure and passes reaching a peak around 500 kPa and dropped off for further increases. The reduction in yield was over 35% in some cases, suggesting that careful traffic planning is essential to obtain better production in agricultural fields. Prediction models were obtained for all the plant growth characteristics in terms of traffic variables. A relation for yield in terms of soil bulk density was established for a dry season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号