首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luminescence and luminescence excitation spectra of CdSe/ZnSe quantum dots are studied in a set of double quantum wells with the ZnSe barrier of width 14 nm, the same amount of a deposited CdSe layer forming a deep well and shallow wells with different depths. It is found that for a certain relation between the depths of shallow and deep wells in this set, conditions are realized under which the exciton channel in the luminescence excitation spectrum of a shallow well dominates in the region of kinetic exciton energies exceeding 10 longitudinal optical phonons above the bottom of the exciton band of the ZnSe barrier. A model is developed for the transfer of electrons, holes, and excitons between the electronic states of shallow and deep quantum wells separated by wide enough barriers. It is shown that the most probable process of electronic energy transfer between the states of shallow and deep quantum wells is indirect tunneling with the simultaneous excitation of a longitudinal optical phonon in the lattice. Because the probability of this process for single charge carriers considerably exceeds the exciton tunneling probability, a system of double quantum wells can be prepared in which, in the case of weak enough excitation, the states of quantum dots in shallow quantum wells will be mainly populated by excitons, which explains experimental results obtained.  相似文献   

2.
The spectra and kinetics of photoluminescence from multilayered structures of quasi-ordered silicon nanocrystals in a silica matrix were studied for undoped samples and samples doped with erbium. It was shown that the optical excitation energy of silicon nanocrystals could be effectively transferred to Er3+ ions, which was followed by luminescence at a wavelength of 1.5 µm. The effectiveness of energy transfer increased as the size of silicon nanocrystals decreased and the energy of exciting light quanta increased. The excitation of erbium luminescence in the structures was explained based on dipole-dipole interaction (the Förster mechanism) between excitons in silicon nanocrystals and Er3+ ions in silica surrounding them.  相似文献   

3.
Low-temperature photoluminescence spectroscopy with pulsed synchrotron excitation is applied to study the regularities of excitation and relaxation of both point defects and nanoparticles formed by tin implantation into SiO2 films and glasses. It has been found that tin implantation followed by air and nitrogen annealing yields the formation of α-Sn nanoclusters and nonstoichiometric SnO x nanoparticles, while a stable phase of SnO2 does not appear. Alternative channels of luminescence excitation are revealed for nanoclusters, including energy transfer from excitons and electron-hole pairs of the host SiO2 matrix.  相似文献   

4.
We have investigated the photoluminescence (PL) properties of amorphous silicon nanoparticles (a-Si NPs) embedded in silicon nitride film (Si-in-SiNx) grown by helicon wave plasma-enhanced chemical vapor deposition (HWP-CVD) technique. The PL spectrum of the film exhibits a broad band constituted of two Gaussian components. From photoluminescence excitation (PLE) measurements, it is elucidated that the two PL bands are associated with the a-Si NPs and the silicon nitride matrix surrounding a-Si NPs, respectively. The existence of Stokes shift between PL and absorption edge indicates that radiative recombination of carriers occurs in the states at the surface of the Si NPs, whereas their generation takes place in the a-Si NPs cores and the silicon nitride matrix, respectively. The visible PL of the film originates from the radiative recombination of excitons trapped in the surface states. At decreasing excitation energy (Eex), the PL peak energy was found to be redshifted, accompanied by a narrowing of the bandwidth. These results are explained by surface exciton recombination model taking into account there existing a size distribution of a-Si NPs in the silicon nitride matrix.  相似文献   

5.
Ir(PPY)3对Rubrene荧光材料的敏化性研究   总被引:1,自引:1,他引:0  
最近几年,磷光器件是有机电致发光研究领域和产业化的一大热点。在实验中作者发现PVK∶PBD∶Rubrene共掺体系的发光中存在较强的PVK发光,能量传递不充分。由于一些具有重金属离子的有机物,存在强的自旋-轨道耦合作用,引入到共掺体系可以充分利用单线态和三线态的发光,从而获得高于一般有机材料器件所达到的内量子效率。为获得单色性较好的Rubrene发光,作者将磷光敏化剂Ir(ppy)3引入到PVK∶PBD∶Rubrene共掺溶液中,得到了纯正Rubrene发光,Forester能量传递也更加充分。当进一步提高Rubrene掺杂浓度以后,单色性Rubrene发光更加明显,并讨论了Ir(ppy)3所起的作用和器件的发光机理。磷光材料与有机小分子材料共掺的方法,可以有效提高器件的发光亮度及效率。  相似文献   

6.
We demonstrate efficient resonant energy transfer from excitons confined in silicon nanocrystals to molecular oxygen (MO). Quenching of photoluminescence (PL) of silicon nanocrystals by MO physisorbed on their surface is found to be most efficient when the energy of excitons coincides with triplet-singlet splitting energy of oxygen molecules. The dependence of PL quenching efficiency on nanocrystal surface termination is consistent with short-range resonant electron exchange mechanism of energy transfer. A highly developed surface of silicon nanocrystal assemblies and a long radiative lifetime of excitons are favorable for achieving a high efficiency of this process.  相似文献   

7.
A silicon wafer implanted with a single low energy (42 keV) silicon ion beam results in strong luminescence at room temperature. The implantation results in the formation of various luminescent defect centers within the crystalline and polymorphous regions of the wafer. The resulting luminescence centers (LC) are mapped using fluorescence lifetime imaging microscopy (FLIM). The emission from the ion-implanted wafer shows multiple PL peaks ranging from the UV to the visible; these emissions originate from bound excitonic states in crystal defects and interfacial states between crystalline/amorphous silicon and impurities within the wafer. The LCs are created from defects and impurities within the wafer and not from nanoparticles.  相似文献   

8.
在不同晶格温度和不同激发光强度下,测量了四元系GaInAsSb/GaAlAsSb单量子阱中自由激子的荧光光谱,导出了稳态光谱测量条件下自由激子荧光强度与激发光强度和晶格温度的一般性公式.计算结果表明,激子相对占有数引起的温度和密度效应会影响激子发光的强度关系.根据本文的简单模型,线性比例系数I/I0实际上综合地反映了量子阱中自由激子的荧光效率,而从激子荧光强度的Arrhenius图的最佳拟合中不仅可以得到激子的束缚能和激活能,而且还能估计出量子阱材料的本底浓度和散射时间常数. 关键词:  相似文献   

9.
The excitation and relaxation of spatially confined excitons in semiconductor quantum dots have been considered. The temperature dependence of the luminescence of quantum dots in dielectric matrices is described by the model taking into account the singlet-triplet intercombination conversion of spatially confined excitons. The analytical expression describing the temperature dependence of photoluminescence is derived and the physical meaning of the constants involved in this expression is determined. The applicability of the expression to the analysis of the luminescent properties of the quantum dots is demonstrated by the example of silicon nanoclusters in a thin-film SiO2 matrix.  相似文献   

10.
方容川  杨嘉玲 《发光学报》1992,13(4):275-280
用电化学腐蚀法制备出多孔硅系列样品.室温下具有明亮可见的光致发光.增大电解电流或延长腐蚀时间,发光光谱明显地“蓝移”;提高样品测量温度,发光光谱也明显地“蓝移”。红外吸收光谱表明多孔硅中除了硅丝骨架以外,还含有H、F及O等元素,随着腐蚀时间的增加,F和O原子的相对含量增加.实验结果表明,多孔硅在可见光区的发光现象是一种量子尺寸效应.  相似文献   

11.
Exciton states in Zn(Cd)Se/ZnMgSSe quantum wells with different diffusion spreading of interfaces are studied by optical spectroscopy methods. It is shown that the emission spectrum of quantum wells at low temperatures is determined by free excitons and bound excitons on neutral donors. The nonlinear dependence of the stationary photoluminescence intensity on the excitation power density and the biexponential luminescence decay are explained by the neutralization of charged defects upon photoexcitation of heterostructures. With the stationary illumination on, durable (about 40 min) reversible changes in the reflection coefficient near the exciton resonances of quantum wells are observed. It is shown that, along with the shift of exciton levels, the spreading of heteroboundaries leads to three effects: an increase in the excitonphonon interaction, an increase in the energy shift between the emission lines of free and bound excitons, and a decrease in the decay time of exciton luminescence in a broad temperature range. The main reasons for these effects are discussed.  相似文献   

12.
Features in the spectra of absorption, luminescence, and luminescence efficiency obtained under sample excitation with differently polarized laser radiation, and the nonlinear dependence of the luminescence intensity on the excitation level are explained as due to excitonic transitions in semiconductor (InP)-insulator (chrysotile asbestos) quantum wires. The measured excitonic-transition energies in the quantum wires are in quantitative agreement with calculations. The calculations took into account both the size quantization in a quasi-one-dimensional structure and the “dielectric enhancement” of excitons (the noticeable increase of the exciton binding energy and of the excitonic-transition oscillator strength associated with the increased attraction between the electron and the hole due to the large difference between the dielectric permittivities of the semiconductor and the dielectric matrix).  相似文献   

13.

The processes of excitation and relaxation of confined excitons in semiconductor quantum dots upon indirect high-energy excitation have been considered. The temperature behavior of photoluminescence of quantum dots in a SiO2 dielectric matrix has been described using a model accounting for the process of population of quantum-dot triplet states upon excitation transfer through mobile excitons of the matrix. Analytical expressions that take into account the two-stage and three-stage schemes of relaxation transitions have been obtained. The applicability of these expressions for analyzing fluorescence properties of semiconductor quantum dots has been demonstrated using the example of silicon and carbon nanoparticles in the thin-film SiO2 matrix. It has been shown that the complex character of the temperature dependences of the photoluminescence upon indirect excitation can be an indication of a multistage relaxation of excited states of the matrix and quantum dots. The model concepts developed in this study allow one to predict the form of temperature dependences of the photoluminescence for different schemes of indirect excitation of quantum dots.

  相似文献   

14.
In two-dimensional heterostructures made of semiconductor and organic layers, when resonance between the Wannier and Frenkel excitons is realized, the dipole-dipole interaction coupling them leads to novel effects. First, we discuss the pronounced nonlinear optical properties of the hybrid Frenkel-Wannier excitons appearing when the energy splitting of the excitonic spectrum is large compared to the exciton linewidths (the case of strong resonant coupling). Next, we consider the case of weak resonant coupling for which the Förster mechanism of energy transfer from an inorganic quantum well to an organic overlayer is of great interest: the electrical pumping of excitons in the semiconductor quantum well could be employed to turn on efficiently the organic material luminescence.  相似文献   

15.
Inspired by an experiment of indirect excitons photoluminescence (PL) in elevated quantum trap (High et al., 2009), we theoretically investigate the energy relaxation and nonlinear interactions of indirect excitons in coupled quantum wells. It is shown that, when increasing the laser power, the intensity reversion of two PL peaks is due to the phonon necklace effect. In addition, we use a nonlinear Schrödinger equation including attractive two-body, repulsive three-body interactions and the excitation power dependence of energy distribution to understand the exciton states. This model gives a natural account for the PL blue shift with the increase of the excitation power. This study thus provides an alternative way to understand the underlying physics of the exciton dynamics in coupled potential wells.  相似文献   

16.
Photoluminescence (PL) and photoluminescence excitation (PLE) spectra of undoped spiro-TAD films and spiro-TAD films doped either by the organic dyes coumarin 7 or DCM as well as by both of these dyes simultaneously were investigated at different dye concentrations. A widened PL spectrum caused by doping was encountered and violet-to-red emission was obtained. It was established that excitation of the dyes is realized most efficiently through spiro-TAD. The overall integral PL intensity of the coumarin 7 doped films increased with dye concentration due to the suppression of nonradiative recombination in the film caused by a transfer of spiro-TAD excitation energy to the dye molecules. Mainly radiative energy transfer from semiconductor to dye molecules occurs in the case of DCM doping. No mutual influence on the luminescence of both dyes in the spiro-TAD film was observed and as a consequence, the PL band intensity of each dye can be adjusted separately.  相似文献   

17.
Abstract

The origin of the luminescence bands at 7.5 eV anv 3.8 eV appearing additionaly to the luminescence of F- and F+- centres in pure Al2O3 are investigated. The time - resolved luminescence spectra, absorption and luminescence excitation spectra as well as trap spectroscopy data depending on deviation from the stochiometry of crystals are discussed in terms of self - trapping of excitons in two configurations. The role of defects due to annihilation of excitons is considered.  相似文献   

18.
Matsui H  Nomura W  Yatsui T  Ohtsu M  Tabata H 《Optics letters》2011,36(19):3735-3737
We studied photoluminescence (PL) and energy-transfer dynamics in a hybrid structure comprising a Cd(0.08)Zn(0.92)O quantum well (QW) and an Ag nanostructure. The observed PL quenching was dependent on the electronic states in the QW. Quenching occurred at low temperature where excited carriers recombined radiatively because of excitonic localization, which disappeared with increasing temperature due to delocalization of excitons. Furthermore, nanostructured Ag surfaces produced local surface plasmon (LSP) absorption that was resonant with the PL peak energy of the QW emission. These results indicate that the recombination energy of excitons transfers nonradiatively to induce LSP excitation, which was revealed using time-resolved PL measurements.  相似文献   

19.
Photoluminescence spectra of interwell excitons in double GaAs/AlGaAs quantum wells (n-i-n structures) have been investigated (an interwell exciton in these systems is an electron-hole pair spatially separated by a narrow AlAs barrier). Under resonance excitation by circularly polarized light, the luminescence line of interwell excitons exhibits a significant narrowing and a drastic increase in the degree of circular polarization of photoluminescence with increasing exciton concentration. It is found that the radiative recombination rate significantly increases under these conditions. This phenomenon is observed at temperatures lower than the critical point and can be interpreted in terms of the collective behavior of interwell excitons.  相似文献   

20.
We predict an efficient electronic energy transfer from an excited semiconductor quantum well to optically active organic molecules of the nearby medium (substrate and/or overlayer). The energy transfer mechanism is of the F?rster type and, at semiconductor-organic distances of about 50 ?, can easily be as fast as 10-100 ps, which is about an order of magnitude shorter than the effective exciton lifetime in an isolated quantum well. In such conditions, the Wannier-Mott exciton luminescence is quenched and the organic luminescence is efficiently turned on. We consider both free as well as localized quantum well excitons discussing the dependence of the energy transfer rate on temperature and localization length. A similar mechanism for the non-radiative energy transfer to the organic overlayer molecules from unbound electron-hole pairs excited in the 2D continuum is shown to be much less competitive with respect to other relaxation channels inside the inorganic quantum well (in particular, 2D exciton formation). Received 20 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号