首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystalline and strongly luminescent complexes of europium hexafluoroacetylacetonate and trifluoroacetate with triphenylphosphine oxide of Eu(HFAA)3 · 2TPPO and [Eu(TFA)3 · 2TPPO(H2O)]2 composition are synthesized that demonstrating triboluminescent properties. It is established that the measured photoluminescence and triboluminescence spectra of these noncentrosymmetric complex compounds are identical, due to the characteristic f-f-luminescence of the europium(III) ion.  相似文献   

2.
The solubilization of an europium (III) β-diketonate chelate in aqueous medium and the changes in its photophysical properties upon its inclusion into an α-cyclodextrin hydrophobic cavity are described. The complex [Eu(tta)3·(H2O)2] (tta = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione) was synthesized, characterized, and incorporated into the hydrophobic cavity by stirring in an α-cyclodextrin aqueous solution. The inclusion was confirmed by 1H NMR, and the stoichiometry of association was obtained by the Job method. The maximum in the excitation spectrum of the α-CD inclusion compound in aqueous solution was shifted 28 nm compared with the maximum of non α-CD complex. The emission spectrum of the association is similar to that of the free solid complex and displays the characteristic 5D0 → 7F0-4 Eu3+ transitions.  相似文献   

3.
As an active catalyst to promote thermolysis of ammonium perchlorate (AP), potassium lead hexanitrocobaltate(II) complex (K2Pb[Co(NO2)6]) was synthesized by the direct deposition method and inverse microemulsion method. Its submicron, size, cube morphology, and crystal structure were investigated by SEM, TEM, and XRD analysis, respectively. Thermal decomposition of K2Pb[Co(NO2)6] was studied by the TG/DSC-IR online system and XRD analysis. The catalyst was decomposed at about 300 °C; its gaseous products were NO2, NO, and N2O and its solid products were Pb3O4, Co3O4, PbO, CoO, and KNO2. Because thermal decomposition of the catalyst was synchronous with low temperature decomposition of AP, thermolysis of AP was promoted remarkably. In particular, the gaseous products (NO x ) could directly oxidize the absorbed NH3. As a result, compared to the data of pure AP, the integral heat of AP added 3.0 wt% of the catalyst multiplied by 280 %, the maximum rate of heat release increased by 634 %. The decomposition of catalyzed AP ended at about 317 °C, at which only less than 30 % of pure AP decomposed.  相似文献   

4.
Herein, novel host–guest films produced by coarse vacuum cosublimation of the parylene C dimer and Eu(tta)3phen are prepared and studied. Eu(tta)3phen sublimation at different temperatures allows films with different concentrations of the Eu complex to be obtained. The films are characterized by Rutherford backscattering spectrometry (RBS), FTIR spectroscopy, X‐ray diffraction (XRD), atomic force microscopy (AFM), and UV/Vis absorption and emission spectroscopy. RBS, FTIR, and XRD reveal the incorporation of Eu(tta)3phen into the parylene matrix. AFM evidences the very flat film surface, which is particularly advantageous for optical applications. UV/Vis absorption and emission analyses confirm that the optical properties of Eu(tta)3phen are preserved in the deposited films. Fluorescence measurements evidence the occurrence of an energy‐transfer process between parylene and Eu(tta)3phen, and this results in an increase in the light emitted by the Eu complex that is as much as five times higher than that emitted by Eu(tta)3phen alone.  相似文献   

5.
Polymers doped with rare earth complexes are advantaged in film production for many applications in the luminescent field. In this luminescent polycarbonate (PC) films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex [Eu(TTA)3(H2O)2] were prepared and their calorimetric and luminescent properties in the solid state are reported. The thermal behavior was investigated by utilization of differential scanning calorimetry (DSC) and thermogravimetry (TG). Due of the addition of rare earth [Eu(TTA)3(H2O)2] into PC matrix, changes were observed in the thermal behavior concerning the glass transition and thermal stability. Characteristic broadened narrow bands arising from the 5D0 → 7FJ transitions (J = 4−0) of Eu3+ ion indicate the incorporation of the Eu3+ ions in the polymer. The luminescent films show enhancement emission intensity with an increase of rare earth concentration in polymeric matrix accompanied by decrease in thermal stability.  相似文献   

6.
New zinc(II) 4-hydroxybenzoate complex compounds with general formula [Zn(4-OHbenz)2LnxH2O, where 4-OHbenz = 4-hydroxybenzoate; L = isonicotinamide, N-methylnicotinamide, N,N-diethylnicotinamide, thiourea, urea, phenazone, theophylline, methyl-3-pyridylcarbamate; n = 2, 3; x = 0–3, 5, were synthesized and characterised by elemental analysis, thermal analysis and IR spectroscopy. The thermal behaviour of the prepared compounds was studied by TG/DTG and DTA methods in argon atmosphere. The thermal decomposition of hydrated compounds started with dehydration. During the thermal decomposition, organic ligand, carbon monoxide, carbon dioxide and phenol were evolved. The final solid product of the thermal decomposition was zinc or zinc oxide. The volatile gaseous product, solid intermediate products and the final product of thermal decomposition were identified by IR spectroscopy, mass spectrometry, qualitative chemical analyses and X-ray powder diffraction method. The antimicrobial activity of zinc(II) carboxylate compounds was tested against various strains of bacteria, yeasts and filamentous fungi (S. aureus, E. coli, C. parapsilosis, R. oryzae, A. alternata, M. gypseum). The presence of zinc in complexes led to the increase in their antimicrobial activity in comparison with free 4-hydroxybenzoic acid.  相似文献   

7.
Hu  Mao-Lin  Huang  Zhen-Yan  Cheng  Ya-Qian  Wang  Shm  Lin  Juan-Juan  Hu  Yi  Xu  Duan-Jun  Xu  Yuan-Zhi 《中国化学》1999,17(6):637-643
The title complex Eu(III)(TTA)3(phen) (where TTA = thenoyltrifluoroacetone monoanion; phen = 1,10-phenanthroline) has been synthesized in mixed solvents of acetone and ethanol (1:1 volume ratio) and its crystal structure has been determined by X-ray diffraction. The complex crystals are triclinic, space group P 1 (# 2) with cell dimensions of a = 1.32.41 (2) nm, b = 1.5278(4) nm, c = 0.9755(3) nm, α = 92.49 (2)°, β = 102.57(2)°, γ = 91.62(2)°, V = 1.9268(8) nm3, Z = 2, μ (Mo Ka)= 18.77 cm?1, Dx=1.720 g/cm3. The coordination geometry of Eu atom is a distorted square antiprism, and the encapsulated structure that can meet the structural requirement of the typical europium luminescent sensor. The fluorescence spectrum suggests that the complex is a strong photoluminescent material.  相似文献   

8.
Hexakis[p-(hydroxymethyl)phenoxy]cyclotriphosphazene (HHPCP) is prepared and characterized by FTIR, 1H-NMR, and 31P-NMR spectroscopy. Then an investigation of the flame retardancy, thermal decomposition behavior of epoxy resin (EP) containing HHPCP is carried out using limiting oxygen (LOI) test, horizontal flame test, smoke density rate (SDR) test, thermogravimetric analysis (TG), and thermal gravimetric analyzer-mass spectrometry (TG-MS). The decomposition process of HHPCP is studied by TG-MS and FTIR. The result shows that the LOI value of EP increase from 20.5 to 26.5 %, when 7.5 mass% HHPCP is added into EP. The addition of 1 mass% nano-montmorillonite (nMMT) into EP–7.5 mass% HHPCP sample as synergist can increase the LOI value of EP–7.5 mass% HHPCP–1 mass% nMMT sample from 26.5 to 27.5 %. The SDR test indicates that smoke suppression of HHPCP on EP is not significant. TG analysis reflects that the EP–7.5 mass% HHPCP sample and EP–7.5 mass% HHPCP–1 mass% nMMT show higher thermal stability properties with an increasing T onset and T max comparing with neat-EP. TG-MS result indicates that the main pyrolysis product of EP is H2O, CO, CO2, C6H6, C6H5OH, HOC6H4CH3, and flammable hydrocarbon fragments CxHy. Compared with neat-EP sample, nonflammable water vapor of EP–7.5 mass% HHPCP sample increased, whereas CO2 and the flammable hydrocarbon fragments CxHy and flammable gas CO decreased. TG-MS and FTIR result suggests that HHPCP decomposed first by inter-molecular dehydration, then P–N hexatomic ring of HHPCP decomposed during 470 and 560 °C, and a little no-flame gas containing nitrogen element volatilized into the gaseous phase.  相似文献   

9.
The non-isothermal degradation of poly(3-hydroxybutyrate) (PHB) and silver sulfide/poly(3-hydroxybutyrate) (Ag2S/PHB) nanocomposites was investigated using thermogravimetric (TG) analysis. In the composite materials, Ag2S caused the degradation of PHB at a lower temperature as opposed to that of neat PHB. Moreover, an increase Ag2S loading in the PHB decreased the onset temperature (Tonset) of thermal degradation, whereas it was raised upon augmenting the heating rate. From Kissinger plots, the observed trend of the degradation activation energy, Ed, was attributed to polymer-particle surface interactions and the agglomeration of Ag2S. The thermal degradation rate constant, k, was linearly related to the Ag2S loading in PHB. Thus, the Ag2S nanoparticles effectively catalyzed the thermal degradation of PHB in the Ag2S/PHB nanocomposites. Differential scanning calorimetry (DSC) data also supported the catalytic property of Ag2S.  相似文献   

10.
Monometallic complexes [Cudadb·yH2O]n (2) and [Nidadb·yH2O]n (3) and heterobimetallic complex [Cu0.5Ni0.5dadb·yH2O]n (4) {where dadbH2 = 2,5-Diamino-3,6-dichloro-1,4-benzoquinone (1); y = 2–4; n = degree of polymerization} were characterized by elemental analysis, atomic absorption spectroscopy, infrared spectroscopy (FTIR) and powder X-ray diffraction. The thermal behaviour of the complexes was studied by thermal analysis (TG/DTA) under air as well as under helium atmospheres. The released gaseous products were investigated by evolved gas analysis performed by an online coupled mass spectrometer (TG/DTA-MS). Thermal degradation of 2 under helium atmosphere is distributed over five steps, whereas 3 and 4 exhibited only four degradation steps due to overlap of second and third degradation steps of into one major step. All the complexes exhibit three steps degradation under air. The complex 2 loses NH group in the second and HCl/Cl2, CO groups simultaneously in third steps of decomposition under helium, whereas it loses NH and CO groups simultaneously in low temperature region of second step of degradation under air atmosphere as the loss of CO group is facilitated by air. EGA-MS under air and helium atmospheres shows that HCl, CO/CO2 and (CN)2 fragments are lost simultaneously at multiple steps, and not successively as predicted earlier. Rate of evolution of most evolved gases exhibits several maxima as a consequence of degradation followed by recombination reactions. Final residues under air and helium atmospheres correspond to the metal oxides and metals along with some carbonaceous matter.  相似文献   

11.
The main purpose of this work is proposing a new method of using non-isothermal formal kinetics analysis to predict the lifetime of luminescent complex materials. The Eu(III)-phenanthroline complex doped xerogel has been in situ synthesized by a catalyst-free sol-gel method. The photoluminescence spectra and TG curves of the xerogel verify the formation and decomposition of Eu(III)-phenanthroline complex in xerogel. The decomposition of the xerogel formally occurs in three steps. The Friedman and FWO isoconversional methods and multivariate non-linear regression method are used for formal kinetic analysis. The overall decomposition process below 800 °C is fitted by three-step consecutive reaction. The best fitted model for each step is Fn (n order reaction, the corresponding function f(α) is (1 − α)n). Correlation coefficient is 0.99956. The lifetime values of xerogel at different temperatures are predicted based on non-isothermal kinetic models by the 5% decomposition of europium organic complex.  相似文献   

12.
In this paper, a novel luminescent hydrogel was successfully prepared by incorporating Tb-HSA (HSA = Human Serum Albumin) complex into cellulose host. The green luminescence intensities of Tb(III) exhibited onoff changes in terms of pH variation. At the same time, europium activated phosphor (GdVO4:Eu3+) was immobilized into the cellulose hydrogels through two approaches. The photophysical properties of luminescent gels with the temperature variation were investigated by fluorescence. The new group of soft materials will display task-specific usages in sensing fields.  相似文献   

13.
The first europium(iii) pyridylphosphine complex, [Eu(N,N’,N”-2-Py3P)(NO3)3] was prepared by the reaction between Eu(NO3)3.6H2O and tris(2-pyridyl)phosphine; its structure was characterized by single-crystal X-ray diffraction.  相似文献   

14.
A complex of europium hydrochloric acid coordinated with 2-aminoacetic acid (C2H5O2N), Eu(C2H5O2N)2Cl3·3H2O was synthesized and characterized by IR and elements analysis. The heat capacities of the complex was measured with an automatic adiabatic calorimeter, and the thermodynamic functions [H T ? H 298.15] and [S T ? S 298.15] were derived in the temperature range from 80 to 340 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scan calorimeter (DSC).  相似文献   

15.
The 1D chain red luminescent europium coordination polymer: {[Eu2L6(DMF)(H2O)] · 2DMF · H2O}n ( I ) (L = 4‐chloro‐cinnamic acid anion, C9H6ClO2, DMF = N, N‐dimethylformamide) was synthesized by the reaction of Eu(OH)3 and 4‐chloro‐cinnamic acid ligand. The structure of the coordination polymer was determined by single‐crystal X‐ray diffraction analysis. It reveals that there exists two crystallographically nonequivalent europium atoms in each unit of this coordination polymer and Eu3+ ions are connected by two alternating bridging modes to form an endless polymer structure. The luminescent properties and energy transfer process in the complex are investigated at room temperature.  相似文献   

16.
Polyethylene films activated with europium(III) complexes with carboxylic acids and Eu(L)3 · nD · xH2O + ANT compositions, where L is the trifluoroacetic, toluyl, or cinnamic acid anion and ANT is anthranilic acid, were prepared. The intensity of luminescence of the polymeric compositions depended on the content of luminophores (molar ratio between europium compounds and anthranilic acid). An analysis of the excitation spectra showed that, in polymer—Eu(L)3 · nPhen · xH2O + ANT compositions, there was effective energy transfer from phenanthroline to anthranilic acid levels.  相似文献   

17.
The structural, luminescent and temperature dependent luminescent properties of two homodinuclear europium complexes bridged by 2,2′-bipyrimidine (bpm) are reported. β-Diketonate ligands 4,4,4-trifluoro-1-(2-furyl)-1,3-butanedione (tfa) and 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (tta) are used as capping ligands resulting in complexes of the form [Eu(tfa)3]2bpm (1) and [Eu(tta)3]2bpm (2). All EuIII ions are eight coordinate with six O atoms from the β-diketones and two N atoms from the polyazine bridging ligand. Excitation of the β-diketonate ligands tfa or tta at ca. 340 nm in toluene solutions results in the characteristic EuIII emission in the visible region of the spectrum. The emission intensity and lifetime associated with the EuIII centers decrease as the temperature of the solution is increased. Lifetime measurements are fit to a monoexponential while the temperature dependent lifetime data is fit to an Arrhenius-type equation. Evaluation of the data in comparison to data obtained from the monometallic EuIII analogs reveal very similar photoluminescent properties. This suggests little electronic communication between EuIII ions via the polyazine bpm bridging ligand.  相似文献   

18.
The lithium and europium(III) cryptates of a macrobicyclic ligand 1 incorporating the 3,3′-biisoquinoline 2,2′-dioxide 2 have been prepared. The Eu(III) complex [Eu(2)2]Cl3 has also been obtained. These Eu(III) complexes present characteristic 1H-NMR spectra containing markedly shifted resonances. They are strongly luminescent; the emission spectra, quantum yields, and lifetimes have been determined.  相似文献   

19.
The first europium(III) β‐diketonate complex functionalized polyhedral oligomeric silsesquioxane (POSS) has been obtained by immobilization of such a complex at a silicon vertex of the POSS cage through the complexation of Eu3+ ions with thenoyltrifluoroacetone‐functionalized POSS. The new molecular hybrid material is liquid at room temperature, and shows bright‐red emission when irradiated with UV light due to energy transfer from the thenoyltrifluoroacetone ligand to the coordinated Eu3+ ions. Thermal analysis has revealed a significant improvement in the thermal stability of the material compared with tris(2‐thenoyltrifluoroacetonate)europium(III) dihydrate, [Eu(TTA)3] ? 2 H2O. In the context of recent advances in printable electronic technology, this novel luminescent organic liquid with the characteristic emission of Eu3+ may potentially be useful in the development of next‐generation organic devices such as flexible displays.  相似文献   

20.
Polystyrene nanoparticles doped with a luminescent europium complex, Eu(tta)(3)phen, are prepared by miniemulsion polymerization. The influence of the complex on the miniemulsion polymerization is investigated by the systematic variation of the initial concentration of Eu(tta)(3)phen from 2 to 7 wt% relatively to styrene. A maximum doping level of about 2% by weight in the final particles can be achieved. At higher doping levels, destabilization of the miniemulsion leads to a loss of reproducibility with respect to both the degree of conversion and the final Eu content of the particles. Doped nanoparticles of varying diameter, ranging from 19 to 94 nm, are successfully prepared. Steady-state and time-resolved luminescence measurements indicate that the luminescence properties of Eu(tta)(3)phen in the doped latexes are unchanged from those found in THF solution. Aqueous dispersions of the doped particles exhibit characteristic red emission under UV light irradiation. The luminescence intensity increases linearly with Eu(tta)(3)phen content, indicating the absence of self-quenching despite the relatively high local concentrations within the particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号