首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Surface tension of aqueous solutions of mixtures of dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium chloride (DTAC) has been measured and analyzed by using thermodynamic relations. The adsorbed film has been found to contain more DTAB molecules than the solution. The shape formed by the curves of the total molality at constant surface tension against the solution and surface compositions indicates the ideal mixing of the DTAB and DTAC molecules in the adsorbed film. Micellar composition has been estimated at the critical micelle concentration (CMC). The micelles have been found to be richer in DTAB than the solution, but poorer in DTAB than the adsorbed film at the CMC. The DTAB and DTAC molecules have been shown to mix ideally in the micelles. From the comparison with the results on the system of decylammonium bromide and decylammonium chloride, it has been concluded that, on the mixing of surfactants differing only in counter ions, the adsorbed film is influenced more significantly by the ionic head group of the surfactant than the micelle.  相似文献   

2.
Densities of aqueous solutions of mixtures of dodecyltrimethylammonium chloride (DTAC) and dodecyltrimethylammonium bromide (DTAB) have been measured as a function of total molality at constant composition and the apparent molar volumes of the mixtures were derived from the density data. The partial molar volumes of monomeric surfactant mixtures, the molar volumes of mixed micelles, and the volumes of formation of mixed micelles were evaluated and are compared with those for decyltrimethylammonium bromide (DeTAB) and DTAB mixtures. The partial molar volumes of monomeric surfactant mixtures and the molar volumes of mixed micelles are observed to depend linearly on the monomer and micelle compositions, respectively. Although the volume of formation of mixed micelles of the DeTAB-DTAB mixture depends on the micellar composition, that of the DTAC-DTAB mixture is observed to be almost independent of the micellar composition. This suggests that the volumes of the counter ions in the micellar solutions are almost equal to those in the monomeric solutions.  相似文献   

3.
The total reflection X-ray absorption fine structure (TR-XAFS) technique was applied to adsorbed films at the surface of aqueous solutions of surfactant mixtures composed of dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium tetrafluoroborate (DTABF4). The obtained XAFS spectra were expressed as linear combinations of two specific spectra corresponding to fully hydrated bromide ions (free-Br) and partially dehydrated bromide ions adsorbed to the hydrophilic groups of surfactant ions (bound-Br) at the surface. The ratio of free- and bound-Br ions was determined as a function of surface tension and surface composition of the surfactants. Taking also the results in our previous studies on the DTAB - dodecyltrimethylammonium chloride (DTAC) and 1-hexyl-3-methylimidazolium bromide (HMIMBr) - 1-hexyl-3-methylimidazolium tetrafluoroborate (HMIMBF4) mixed systems into consideration, the relation between counterion distribution and miscibility of counterions at the solution surface was deduced for the surfactant mixtures having common surfactant ions but different counterions.  相似文献   

4.
The surface tensions (gamma) of the aqueous solutions of tetradecyltrimethylammonium bromide (TTAB) and dodecyltrimethylammonium bromide (DTAB) were measured as a function of the total molality of surfactants (m) and the relative proportion (composition) of DTAB (X(2)) at 298.15 +/- 0.05 K under atmospheric pressure. The effect of the difference in the hydrophobic chain length between hexadecyltrimethylammonium bromide (HTAB) and DTAB on the synergism was examined. This synergism was observed in the miscibility at the surface of a mixture of these two compounds. The excess Gibbs energy of adsorption of the TTAB-DTAB system was positive in contrast to the HTAB-DTAB system. This indicates that there are certain restrictions on the difference in the hydrophobic chain length for the synergism to be brought about in homologous cationic surfactant mixtures. This mechanism was explained by the theory of a staggered structure formation at the air/water interface. A similar argument successfully applied to the hexadecyltrimethylammonium chloride (HTAC)-dodecyltrimethylammonium chloride (DTAC) and tetradecyltrimethylammonium chloride (TTAC)-DTAC mixtures also.  相似文献   

5.
The aqueous sodium undecenoate (SUD) –dodecyltrimethylammonium bromide (DTAB) catanionic system was studied at low concentration. The system did not precipitate, even at a 1:1 SUD:DTAB proportion, but showed the formation of a coacervate in a range of surfactant mixture compositions. Micelles have a preferential composition of 0.37 mole fraction of SUD. This behavior is attributed to the presence of the double bond at the distal extreme of the SUD molecule, which can form hydrogen bonds with water. Consequently, the –CH=CH2 group is situated at the interface between the hydrocarbon micelle core and water, reducing the interfacial free energy. Structural computations demonstrate that the mentioned SUD proportion produces complete coverage of the micelle surface by the double bonds.  相似文献   

6.
To evaluate the effect of preferential surface adsorption of bromide ions on the synergism of homologous cationic surfactant mixtures reported previously, the surface tension of the aqueous solutions of the hexadecyltrimethylammonium chloride (HTAC)-dodecyltrimethylammonium bromide (DTAB) system was measured as a function of the total molality of surfactants and the relative proportion of DTAB at 298.15 +/- 0.05 K under atmospheric pressure. The excess Gibbs energies calculated from them were -2.6 kJ mol(-)(1) in the mixed adsorbed film and -2.0 kJ mol(-)(1) in the mixed micelle, respectively. A useful analytical procedure to evaluate the composition of individual ions (hexadecyltrimethylammonium, dodecyltrimethylammonium, chloride, and bromide ions) in the adsorbed film and micelle was developed and applied.  相似文献   

7.
A triple hydrophilic block copolymer comprised of poly(ethylene oxide), poly(sodium 2-acrylamido-2-methylpropanesulfonate), and poly(methacrylic acid) (PEO–PAMPS–PMAA) does not form a micelle by itself when it is dissolved in water. However, in the previous paper, we fabricated the nanoaggregates of PEO–PAMPS–PMAA and cationic surfactant, such as cetyltrimethylammonium chloride (CTAC), by insolubilizing the anionic PAMPS and/or PMAA blocks of the polymer with CTAC only at high pH. In this paper, we fabricated the nanoaggregates of dodecyltrimethylammonium chloride (DTAC) and PEO–PAMPS–PMAA in a wide range of pH to examine the effect of ionization of the PMAA blocks of the polymer on the aggregates formation of PEO–PAMPS–PMAA. The properties of the nanoaggregates are affected by the ionization of PMAA block of the polymer. DTAC (C12 alkyl chain) was employed instead of CTAC (C16 alkyl chain) to reveal the effect of alkyl chain length of surfactant on the aggregate formation of PEO–PAMPS–PMAA. The properties of PEO–PAMPS–PMAA nanoaggregates also depend on the structure of surfactant. The binding of DTAC to PEO–PAMPS–PMAA was monitored by electrophoresis measurements, while the formation of DTAC/PEO–PAMPS–PMAA nanoaggregates was confirmed by scanning electron microscopy, dynamic light scattering measurements and fluorescence spectroscopy.  相似文献   

8.
The surface tension of an aqueous solution of a hexadecyltrimethylammonium bromide (HTAB) and dodecyltrimethylammonium bromide (DTAB) mixture was measured as a function of the total molality and the composition of DTAB at 298.15 K under atmospheric pressure. The phase diagrams of adsorption and micelle formation were constructed and the excess Gibbs energy was evaluated by analyzing the phase diagrams thermodynamically. Both the excess Gibbs energy in the adsorbed film and the excess surface area are negative; therefore the mutual interaction between HTAB and DTAB is said to be stronger than that between the same species and is enhanced with increasing adsorption. By combining the results with those obtained in previous studies, we claimed that DTAB molecules can use effectively the space among the hydrocarbon chains of HTAB molecules and their polar head groups take a staggered arrangement at the surface so as to reduce the electrostatic repulsion. Consequently the dispersion force between hydrophobic chains becomes stronger. Furthermore, the comparison of the excess Gibbs energy in the adsorbed film with that in the micelle shows that the staggered arrangement of molecules is not necessary in the spherical micelle.  相似文献   

9.
Micelle formation of dodecyltrimethylammonium bromide (DTAB) was examined in the presence of α,ω-alkanediols applying conductivity measurements. Octanediol and hexanediol promoted the formation of mixed micelles of DTAB and the alcohol, but butanediol interfered with micellization. Analysis of the critical micelle concentration (cmc) based on the lattice model for mixed solution with the Bragg–Williams approximation indicated an unfavorable interaction between alcohol and water and a favorable interaction between the alcohol and surfactant, with the exception of butanediol. The exchange energy between alcohol and water was 0.5kT higher for alkanediol (C2n(OH)2) than for the corresponding regular alcohol (CnOH), which is believed to have resulted from the smaller mixing entropy for the alkanediol than for the corresponding regular alcohol. It was inferred from the analysis that the cmc increase for C4(OH)2 was caused by favorable interaction with water but unfavorable interaction with the micellar surfactant.  相似文献   

10.
The interaction between sodium perfluorooctanoate (SPFO) and dodecyltrimethylammonium bromide (DTAB) was studied by several methods and it was found strongly synergistic. Above a mole fraction of SPFO in the surfactant mixture (alpha(SPFO))=0.38, the interaction is repulsive and increases with the content of SPFO in both, the overall mixture and micelles, whereas the interaction is attractive if DTAB is in excess. At alpha(SPFO)=0.38 the low miscibility between hydrocarbon and fluorocarbon is counterbalanced by the electrostatic attraction between the opposite charged head groups, and the micelle composition is ideal (i.e., the mole fraction of SPFO in micelles X(SPFO)=alpha(SPFO)=0.38). The solubility of fluorocarbon in hydrocarbon is lower than that of hydrocarbon in fluorocarbon. Micelles of DTAB act as a solvent for SPFO without important structural changes, whilst micelles of SPFO undergo important changes when dissolve DTAB. This asymmetry may be interpreted as caused by the difference in chain length that favors the inclusion of the shorter chain in micelles of the longer surfactant, but disfavors the opposite process. Above X(SPFO)=0.5 there is an excess adsorption of bromide ions on the mixed micelles surface, giving rise to a high zeta potential. Micelles of pure SPFO or pure DTAB show an important energy barrier which prevents micelle flocculation. The inclusion of SPFO in DTAB micelles produces a reduction of the energy barrier, which disappeared when alpha(SPFO)=0.5. This produces the flocculation of micelles giving rise to the formation of a non-birefringent coacervate, which is probably formed by unordered isometric clusters of micelles.  相似文献   

11.
Aggregation behavior of dodecyldimethyl-N-2-phenoxyethylammonium bromide commonly called domiphen bromide (DB) was studied in aqueous solution. The Krafft temperature of the surfactant was measured. The surfactant has been shown to form micellar structures in a wide concentration range. The critical micelle concentration was determined by surface tension, conductivity, and fluorescence methods. The conductivity data were also employed to determine the degree of surfactant counterion dissociation. The changes in Gibb's free energy, enthalpy, and entropy of the micellization process were determined at different temperature. The steady-state fluorescence quenching measurements with pyrene and N-phenyl-1-naphthylamine as fluorescence probes were performed to obtain micellar aggregation number. The results were compared with those of dodecyltrimethylammonium bromide (DTAB) surfactant. The micelle formation is energetically more favored in DB compared to that in DTAB. The 1H-NMR spectra were used to show that the 2-phenoxyethyl group, which folds back onto the micellar surface facilitates aggregate formation in DB.  相似文献   

12.
Adsorption and micelle formation of a surfactant in the presence of inorganic salts with different charge numbers of cations were investigated from the viewpoint of mixed adsorption and micelle formation of salt and surfactant. Surface tension of aqueous solutions of the mixtures of octyl methyl sulfoxide (OMS) with calcium chloride and lanthanum chloride was measured as a function of the total molality of the mixture and the mole fraction of OMS in the mixture at 298.15 K under atmospheric pressure. Composition of the adsorbed film and micelle was numerically evaluated from the dependence of the total molality at a given surface tension and the mixture CMC on the bulk composition to draw phase diagrams of adsorption and micelle formation. Judging from the phase diagrams together with the ones of the sodium chloride system, miscibility of inorganic salt and OMS in the adsorbed film and micelle increases with an increase in the charge number of inorganic cation, which is attributable to the attractive interaction between inorganic cation and the polar head group of OMS molecule in the adsorbed film and micelle.  相似文献   

13.
 The aqueous catanionic system dodecyltrimethylammonium bromide (DTAB)–disodiumdodecanephosphonate (DSDP) was studied by potentiometry, conductivity, surface tension, spectrometry and dye solubilization. No precipitation of neutral salts was found in the entire range of compositions studied. Up to four transitions were detected. The first transition, at about 0.001 mol dm−3, was probably related to a state change in the adsorption monolayer at the air/water interface. The second, at about 0.0065 mol dm−3, was probably related to the formation of ion pairs. The third transition was the critical micelle concentration which was analyzed with the pseudophase separation model and regular solution theory. The interaction between DTAB and DSDP molecules in micelles was weaker than in other cationic–anionic surfactant mixed micelles. Large, probably rodlike, micelles formed at the fourth transition at higher surfactant concentration. No vesicles or lamellar liquid crystals were detected. The adsorbed monolayer at the air/water interface was also studied by means of regular solution theory. It was much richer in DTAB than the micelles and the intermicellar solution. The interaction between DTAB and DSDP molecules at the air/water interface was very low. The results were explained on the basis of steric factors. Received: 6 January 1999 Accepted in revised form: 13 April 1999  相似文献   

14.
The surface tension of the 1H,1H-heptafluoro-1-butanol (FC4OH)–dodecyltrimethylammonium chloride (DTAC) mixed aqueous solution was measured as a function of the total molality of the mixture and the composition of DTAC at 298.15 K under atmospheric pressure.The phase diagram of adsorption (PDA) that gives the composition relation between the aqueous solution and adsorbed film was constructed. It was suggested that the subtle balance between the attractive surfactant cation-OH dipole interaction and the weak dispersion interaction between C–H and C–F chains is crucial for the phase behavior. The phase diagram of adsorbed film (PDAF) showing the composition relation between the different state of adsorbed films demonstrated the phase behavior is significantly dependent on the degree of counter ion binding. Moreover, the possible surface structures at the azeotropes are suggested.  相似文献   

15.
The cation-π interaction between the aromatic organic counterion potassium hydrogen phthalate (KHP) and DTAB micelle in aqueous mixture of EG was investigated, using the techniques of conductivity measurements, UV absorption spectrum and NMR spectrum. The conductivity and UV spectrum studies were with respect to the effect of KHP on DTAB and that of DTAB micelle on KHP, respectively. According to the chemical shift changes of the aromatic ring and the surfactant methylene protons, it can be assumed that KHP penetrated into DTAB micelle with its carboxylic group protruding out of the micellar surface. And the strength of the interaction became weaker with the content of EG in the mixed solvent increasing.  相似文献   

16.
The adsorption of dodecyltrimethylammonium bromide (DTAB) onto natural muscovite mica and a synthetic expandable mica (EM) in aqueous solution has been investigated using both microscopic and macroscopic surface characterization techniques. The electrokinetic properties of the surfaces were monitored as a function of the concentration of DTAB using atomic force microscopy and microelectrophoresis. The adsorption isotherm of DTAB on EM was measured up to a solution concentration just below the critical micelle concentration of the surfactant. The thickness of the adsorbed layer on EM was determined using X-ray diffraction. Results indicate that the adsorbed layer consists of molecules lying quite flat on the mica surface at low concentrations and adsorbed in interleaved aggregate structures at concentrations approaching the critical micelle concentration of the surfactant in solution. Copyright 2001 Academic Press.  相似文献   

17.
A relationship between the critical micelle concentration (CMC) and the surfactant's composition in the bulk phase that supercedes Rubingh's method is derived for aqueous mixtures of ionic surfactants by considering the interaction between a micellar ionic aggregate and the diffusion layer around it. To test this approach we measured the CMCs of solutions of cationic surfactant mixtures and also of alkylammonium dodecanesulfonate mixtures. In the absence of controlled concentration of the counterion, the CMCs do not fit Clint's equation, but CMCs measured at a constant counterion concentration fit it approximately. The interaction parameter in the theory of regular solutions is obtained from the relationship between the micellar and bulk compositions. The values of the interaction parameter and the concentration exponent change with the hydrophobicity of the counterion in mixtures of alkylammonium dodecanesulfonates. The micellar composition of dodecylammonium chloride and dodecyltrimethylammonium chloride mixtures depends very little on the counterion concentration. The interaction energy between the ammonium and trimethylammonium groups of the cationic surfactants is about -0.05kT on average and depends on the concentration of the counterion.  相似文献   

18.
The surface tension of the aqueous solutions of binary cationic surfactant mixtures of (1) dodecylammnonium chloride (DAC)-tetradecyltrimethylammonium chloride (TTAC), (2) decylammonium chloride (DeAC)-dodecyltrimethylammonium chloride (DTAC), and (3) DAC-DTAC was measured as a function of the total molality and composition of surfactants at 298.15 K. The compositions of surfactants in the adsorbed film and micelle were evaluated and the phase diagram of adsorption and that of micelle formation were constructed. Furthermore the excess Gibbs energies of adsorption and micelle formation were calculated to estimate the deviation from the corresponding ideal mixing. It was found that the surface and micelle are enriched in trimethylammonium salts in (1) and (2), while in ammonium salt in (3) compared to the bulk solution. On the other hand, the micelle is enriched in trimethylammonium salts compared to the surface at the critical micelle concentration (CMC) in all the systems. The miscibility of the surfactants was clarified from the standpoints of the structure of the head group and of the matching between the size of polar head group of surfactants and the difference in hydrocarbon chain length.  相似文献   

19.
The aqueous solutions of mixtures of various conventional surfactants and dimeric anionic and cationic surfactants have been investigated by electrical conductivity, spectrofluorometry, and time-resolved fluorescence quenching to determine the critical micelle concentrations and the micelle aggregation numbers in these mixtures. The following systems have been investigated: 12-2-12/DTAB, 12-2-12/C(12)E(6), 12-2-12/C(12)E(8), 12-3-12/C(12)E(8), Dim3/C(12)E(8), and Dim4/C(12)E(8) (12-2-12 and 12-3-12=dimethylene-1,2- and trimethylene-1,3-bis(dodecyldimethylammonium bromide), respectively; C(12)E(6) and C(12)E(8)=hexa- and octaethyleneglycol monododecylethers, respectively; Dim3 and Dim4=anionic dimeric surfactants of the disodium sulfonate type, Scheme 1; DTAB=dodecyltrimethylammonium bromide). For the sake of comparison the conventional surfactant mixtures DTAB/C(12)E(8) and SDS/C(12)E(8) (SDS=sodium dodecylsulfate) have also been investigated (reference systems). Synergism in micelle formation (presence of a minimum in the cmc vs composition plot) has been observed for the Dim4/C(12)E(8) mixture but not for other dimeric surfactant/nonionic surfactant mixtures investigated. The aggregation numbers of the mixed reference systems DTAB/C(12)E(8) and SDS/C(12)E(8) vary monotonously with composition from the value of the aggregation number of the pure C(12)E(8) to that of the pure ionic component. In contrast, the aggregation number of the dimeric surfactant/C(12)E(8) mixtures goes through a minimum at a low value of the dimeric surfactant mole fraction. This minimum does not appear to be correlated to the existence of synergism in micelle formation. The initial decrease of the aggregation number of the nonionic surfactant upon addition of ionic surfactant, up to a mole fraction of ionic surfactant of about 0.2 (in equivalent per total equivalent), depends little on the nature the surfactant, whether conventional or dimeric. The results also show that the microviscosity of the systems containing dimeric surfactants is larger than that of the reference systems. Copyright 2001 Academic Press.  相似文献   

20.
The miscibility and interactions between components in mixed adsorbed films and micelles containing zwitterionic (dodecyl sulfobetaine--DSB) and cationic (dodecyltrimethylammonium bromide) or anionic (sodium dodecyl sulfonate) surfactant, respectively, have been investigated. The molecular interactions have been quantified by the values of the excess free energy of adsorption (DeltaGS,Exc) and micelle formation (DeltaGM,Exc). The obtained results indicate nonideal behavior of the investigated mixtures since the values of DeltaGS,Exc and DeltaGM,Exc) are negative. Moreover, it has been found that DSB interact more strongly with anionic surfactant as compared to cationic surfactant owing to different structure of mixed monolayers and micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号