首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Despite their relevancy, long‐term studies analyzing elevated CO2 effect in plant production and carbon (C) management on slow‐growing plants are scarce. A special chamber was designed to perform whole‐plant above‐ground gas‐exchange measurements in two slow‐growing plants (Chamaerops humilis and Cycas revoluta) exposed to ambient (ca. 400 µmol mol?1) and elevated (ca. 800 µmol mol?1) CO2 conditions over a long‐term period (20 months). The ambient isotopic 13C/12C composition (δ13C) of plants exposed to elevated CO2 conditions was modified (from ca. ?12.8‰ to ca. ?19.2‰) in order to study carbon allocation in leaf, shoot and root tissues. Elevated CO2 increased plant growth by ca. 45% and 60% in Chamaerops and Cycas, respectively. The whole‐plant above‐ground gas‐exchange determinations revealed that, in the case of Chamaerops, elevated CO2 decreased the photosynthetic activity (determined on leaf area basis) as a consequence of the limited ability to increase C sink strength. On the other hand, the larger C sink strength (reflected by their larger CO2 stimulatory effect on dry mass) in Cycas plants exposed to elevated CO2 enabled the enhancement of their photosynthetic capacity. The δ13C values determined in the different plant tissues (leaf, shoot and root) suggest that Cycas plants grown under elevated CO2 had a larger ability to export the excess leaf C, probably to the main root. The results obtained highlighted the different C management strategies of both plants and offered relevant information about the potential response of two slow‐growing plants under global climate change conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In an effort to probe the reaction of antibiotic hydrolysis catalyzed by B3 metallo-??-lactamase (M??L), the thermodynamic parameters of penicillin G hydrolysis catalyzed by M??L L1 from Stenotrophomonas maltophilia were determined by microcalorimetric method. The values of activation free energy ??G ?? ?? are 88.26, 89.44, 90.49, and 91.57?kJ?mol?1 at 293.15, 298.15, 303.15, and 308.15?K, respectively, activation enthalpy ??H ?? ?? is 24.02?kJ?mol?1, activation entropy ??S ?? ?? is ?219.2511?J?mol?1?K?1, apparent activation energy E is 26.5183?kJ?mol?1, and the reaction order is 1.0. The thermodynamic parameters reveal that the penicillin G hydrolysis catalyzed by M??L L1 is an exothermic and spontaneous reaction.  相似文献   

3.
The present study deals with the immobilization of Aspergillus nidulans SU04 cellulase onto modified activated carbon (MAC). The effect of contact time, cellulase concentration, MAC dosage, and temperature for maximum immobilization percentage and immobilization capacity is investigated. The equilibrium nature of immobilization is described by Langmuir and Freundlich isotherms. The kinetic data were tested using the pseudo first order. The activation energy of immobilization was evaluated to be 11.78?J?mol?1. Results of the thermodynamic investigation indicate the spontaneity (?G <0), slightly endothermic (?H >0), and irreversible (?S >0) nature of the sorption process. Entropy and enthalpy were found to be 41.32 J?mol?1?mg?1 and 10.99?kJ?mol?1, respectively. The Gibbs free energy was found to be ?22.79?kJ?mol?1. At 80?rpm, 323?K, 2?h, 5?mg of MAC, immobilization capacity was 4.935?mg cellulase per mg of MAC from an initial cellulase concentration of 16?mg?ml?1 with retention of 70% of native cellulase activity up to 10 cycles of batch hydrolysis experiments. The diffusion studies that were carried out revealed the reaction rate as ??mol?min?1. At optimized conditions, immobilized cellulase had a higher Michaelis?CMenten constant, K m of 1.52?mmol and a lower reaction rate, V max of 42.2???mol?min?1, compared with the free cellulase, the K m and V max values of which were 0.52?mmol and 18.9???mol?min?1, respectively, indicating the affinity of cellulase for MAC matrix.  相似文献   

4.
The oxidation processes of the radiation-generated, three-electron-bonded intermediates AcMet2 [S??S]+ and AcMet [S??Br] were investigated by pulse radiolysis via their reactions with tryptophan (TrpH). These intermediates were derived from N-acetyl-methionine amide (N-AcMetNH2) and N-acetyl-methionine methyl ester (N-AcMetOMe). The bimolecular rate constant k of the reaction between each intermediate and l-tryptophan (TrpH) was measured. For N-AcMetNH2, k for the reaction of AcMet2 [S??S]+ with TrpH were 3.4?×?108 and 2.2?×?108?dm3?mol?1?s?1 at pH?=?1 and 4.5, respectively. For N-AcMetOMe, k for the reaction of AcMet2 [S??S]+ with TrpH were 4.0?×?108 and 2.8?×?108?dm3?mol?1?s?1 at pH 1 and 4.5, respectively. The rate constants for the intermolecular transformation of Met [S??Br] into TrpH+ or Trp were also estimated. For N-AcMetNH2, k for the reaction of AcMet2 [S??Br] with TrpH were 2.6?×?108 and 3.3?×?108?dm3?mol?1?s?1 at pH 1 and 4.5, respectively. Related mechanisms were discussed.  相似文献   

5.
Gas-phase reactions typical of the Earth’s atmosphere have been studied for a number of partially fluorinated alcohols (PFAs). The rate constants of the reactions of CF3CH2OH, CH2FCH2OH, and CHF2CH2OH with fluorine atoms have been determined by the relative measurement method. The rate constant for CF3CH2OH has been measured in the temperature range 258–358 K (k = (3.4 ± 2.0) × 1013exp(?E/RT) cm3 mol?1 s?1, where E = ?(1.5 ± 1.3) kJ/mol). The rate constants for CH2FCH2OH and CHF2CH2OH have been determined at room temperature to be (8.3 ± 2.9) × 1013 (T = 295 K) and (6.4 ± 0.6) × 1013 (T = 296 K) cm3 mol?1 s?1, respectively. The rate constants of the reactions between dioxygen and primary radicals resulting from PFA + F reactions have been determined by the relative measurement method. The reaction between O2 and the radicals of the general formula C2H2F3O (CF3CH2? and CF3?HOH) have been investigated in the temperature range 258–358 K to obtain k = (3.8 ± 2.0) × 108exp(?E/RT) cm3 mol?1 s?1, where E = ?(10.2 ± 1.5) kJ/mol. For the reaction between O2 and the radicals of the general formula C2H4FO (? HFCH2O, CH2F?HOH, and CH2FCH2?) at T = 258–358 K, k = (1.3 ± 0.6) × 1011exp(?E/RT) cm3 mol?1 s?1, where E = ?(5.3 ± 1.4) kJ/mol. The rate constant of the reaction between O2 and the radicals with the general formula C2H3F2O (?F2CH2O, CHF2?HOH, and CHF2CH2?) at T = 300 K is k = 1.32 × 1011 cm3 mol?1 s?1. For the reaction between NO and the primary radicals with the general formula C2H2F3O (CF3CH2? and CF3?HOH), which result from the reaction CF3CH2OH + F, the rate constant at 298 K is k = 9.7 × 109 cm3 mol?1 s?1. The experiments were carried out in a flow reactor, and the reaction mixture was analyzed mass-spectrometrically. A mechanism based on the results of our studies and on the literature data has been suggested for the atmospheric degradation of PFAs.  相似文献   

6.
The rate constant of the gas-phase reaction Fe(a 5 D 4) + CO2 at 1180–2380 K and a total gas density of (7.0–10.0) × 10?6 mol/cm3 behind incident shock waves is k(Fe + CO2) = 1.4 × 1014.0 ± 0.3exp[?(14590 ± 1100)/T] cm3 mol?1 s?1, as determined by resonance atomic absorption photometry. Using thermochemical data available from the literature, the rate constant of the reverse reaction was calculated to be k(Fe + CO) = 9.2 × 1011.0 ± 0.3 (T/1000)0.57exp[?(490 ± 1100)/T] cm3 mol?1 s?1. The results are compared with data reported earlier.  相似文献   

7.
The copolymerization of ethylene (E) and norbornene (NB) was investigated using the commercially available and inexpensive catalyst system, cyclopentadienylzirconium trichloride (CpZrCl3)/isobutyl‐modified methylaluminoxane (MMAO), at a moderate polymerization temperature in toluene. For the CpZrCl3 catalyst system activated by aluminoxane with a 40 mol % methyl group and a 60 mol % isobutyl group (MMAO), the quantities of the charged NB and the polymerization temperature significantly affected the molecular weights, polydispersities, and NB contents of the obtained copolymers and the copolymerization activities in all the experiments. As the charged NB increased and thereby the NB/E molar ratio increased, the NB content in the copolymer increased and reached a maximum value of 71 mol %. The CpZrCl3/MMAO ([Al]/[Zr] = 1000) catalyst system with the [NB] of 2.77 mol L?1 and ethylene of 0.70 MPa at 50 °C showed the highest activity of 1690 kg molZr?1 h?1 and molecular weight of 21,100 g mol?1. The 13C NMR analysis showed that the CpZrCl3/MMAO catalyst system produced the E‐NB random copolymer with a number of NB homosequences such as the NN dyad and NNN triad. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7411–7418, 2008  相似文献   

8.
A new ionic compound (3-ATz)+ (NTO)?C was synthesized by the reaction of 3-amino-1,2,4-triazole (3-ATz) with 3-nitro-1,2,4-triazol-5-one (NTO) in ethanol. The single crystals suitable for X-ray diffraction measurement were obtained by crystallization at room temperature. The crystal is monoclinic, space group p 2(1)/c with crystal parameters of a?=?0.6519(2)?nm, b?=?1.9075(7)?nm, c?=?0.6766(2)?nm, ???=?94.236(4)°, R 1?=?0.0305 and wR 2?=?0.0789. The thermal behaviors were studied, and the apparent activation energy and pre-exponential constant of the exothermic decomposition stage were obtained by Kissinger??s method and Ozawa??s method. The self-accelerating decomposition temperature is 505.40?K, and the critical temperature of the thermal explosion is obtained as 524.90?K. The specific heat capacity was determined with Micro-DSC method and the theoretical calculation method, and the standard molar specific heat capacity is 221.31?J?mol?1?K?1 at 298.15?K. The Gibbs free energy of activation, enthalpy of activation, and entropy of activation are 151.55?kJ?mol?1, 214.52?kJ?mol?1 and 122.44?J?mol?1?K?1. The adiabatic time-to-explosion of the compound was estimated to be a certain value between 5.0 and 5.2?s, and the detonation velocity (D) and pressure (P) were also estimated using the nitrogen equivalent equation according to the experimental density.  相似文献   

9.
Density functional theory was used to calculate the intrinsic reaction coordinate of hydrogen atom abstraction from a number of organic molecules of different classes by C7F15 radical. These reactions involve the formation of stable pre- and post-reactive complexes with binding energies comparable to the activation barriers and reaction energies. An analysis of the results obtained using the dimensionless reaction coordinate showed that the generalized Polanyi-Semenov relationship E a = A + 0.5??H + ??H 2/(2W) is fulfilled. For primary and secondary C-H bonds of esters and ketones, it reproduces the calculated activation energies with an error of at most 1 kcal mol?1 provided A = 8.5 kcal mol?1 and W = 43 kcal mol?1. The accuracy of the generalized Polanyi-Semenov relationship decreases when the enthalpy difference between the pre- and post-reactive complexes is used as the ??H value because, as a rule, the structures of these complexes are not directly related to the structure of the transition state.  相似文献   

10.
The pyrolysis of hydrated bis(pyrazinecarboxylate)copper(II) under an argon atmosphere proceeds via the loss of the water molecules at 84–95°C, ΔH=40.4 kJ (mol H2O)?1 followed by the thermal decomposition of the complex at 284–325°C, ΔH=97.0 kJ·mol?1, yielding 0.72 mole of pyrazine, 0.28 mole of bipyrazine, and 2 mole of CO2 per mole of complex.  相似文献   

11.
In order to understand the mobility of uranium it is very important to know about its sorption kinetics and the thermodynamics behind the sorption process on soil. In the present study the sorption kinetics of uranium was studied in soil and the influence parameters to the sorption process, such as initial uranium concentration, pH, contact time and temperature were investigated. Distribution coefficient of uranium on soil was measured by laboratory batch method. Experimental isotherms evaluated from the distribution coefficients were fit to Langmuir, Freundlich and Dubinin?CRadushkevich (D?CR) models. The sorption energy for uranium from the D?CR adsorption isotherm was calculated to be 7.07?kJ?mol?1.The values of ??H and ??S were calculated to be 37.33?kJ?mol?1 and 162?J?K?1?mol?1, respectively. ??G at 30?°C was estimated to be ?11.76?kJ?mol?1. From sorption kinetics of uranium the reaction rate was calculated to be 1.6?×?10?3?min?1.  相似文献   

12.
Thermal and thermochemical investigations of natural hydroxyl-bearing copper sulfate Cu3SO4(OH)4??antlerite have been carried out. The stages of its thermal decomposition have been studied employing the Fourier-transform IR spectroscopy. The enthalpy of formation of antlerite from the elements ??f H m o (298.15?K)?=?(?1750?±?10)?kJ?mol?1 has been determined by the method of oxide melt solution calorimetry. Using value of S m o (298.15?K), equal to (263.46?±?0.47)?J?K?1?mol?1, obtained earlier by the method of adiabatic calorimetry, the Gibbs energy value of ??f G m o (298.15?K)?=?(?1467?±?10)?kJ?mol?1 has been calculated.  相似文献   

13.
Natural prenyloxycinnamic acids were shown to exert in vitro and in vivo remarkable and valuable anti-cancer and anti-inflammatory effects. Among these, 4??-geranyloxyferulic acid [3-(4??-geranyloxy-3??-methoxyphenyl)-2-trans-propenoic acid] was discovered as an efficient orally active chemopreventive agent of several types of cancer, and its structural analogue boropinic acid was shown to exert a valuable inhibitory effect both in vitro and in vivo against the growth of Helicobacter pylori. As a continuation of our chemical, chemico-physical, and pharmacological studies on these secondary metabolites, we report herein the comparison between traditional UV/Vis assays and HPLC?CDAD methods for the determination of the molar absorptivity coefficient of 4??-geranyloxyferulic acid (?? 310 = 12,950 and ?? 288 = 11,910 L mol?1 cm?1) and boropinic acid (?? 310 = 13,510 and ?? 288 = 12,350 L mol?1 cm?1). Ferulic acid was merely used as a reference standard to test the possibility of the application of these two assays to the oxyprenylated compounds. The data reported in the present study will represent an essential aid for future studies aimed to better define the pharmacological profile and the mechanism of action of these compounds and are an important starting point to evaluate other natural products where standard powders are not available.  相似文献   

14.
Porous copolymers of divinylbenzene (DVB) and acrylic acid (AA) having DVB:AA ratios of 6:4, 8:2 and 9:1 were prepared following a distillation-precipitation method, using toluene as the porogenic agent. The materials thus obtained, which showed specific surface area in the range of 380–600 m2 g?1 and pore volume in the range of 0.14–0.18 cm3 g?1, were investigated as possible adsorbents for CO2 capture from the flue gas of coal-fired power stations. For that purpose, the isosteric heat of adsorption (and CO2 adsorption capacity) was analysed from N2 and CO2 adsorption equilibrium isotherms obtained over a temperature range. For CO2, q st resulted to be in the range of 27–31 kJ mol?1 (the highest value corresponding to the 6:4 sample), while for N2 a value of q st ≈ 12 kJ mol?1 was obtained. Equilibrium adsorption capacity for CO2 (at ambient temperature and pressure) showed the value of about 1.35 mmol g?1. These results are discussed in the broader context of corresponding literature data for CO2 capture using protonic zeolites.  相似文献   

15.
Rate constants have been measured in aqueous solutions for the reactions of the carbonate radical, CO3˙?, with several saturated alcohols and one cyclic ether as a function of temperature. Arrhenius pre-exponential factors ranged from 2×108 to 1×109 ?? mol?1 s?1 and activation energies ranged from 16 to 29 kJ mol?1. The results suggest that the reactions are not pure hydrogen abstraction, but involve an additional interaction of the radical with the ? OH or ? O? linkage. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
The kinetics of the reduction of octacyanomolybdate(V) and octacyanotungstate(V) by sulphite ions has been studied over a wide pH range. The reaction is catalysed by alkali metal ions. The rate law is found to be of the form:
The third order rate constants at [OH?] = 0.05 mol dm?3 for the reduction of Mo(CN)83? and W(CN)3?8 were determined as 6.2 x 103dm6mol?2 s?1 and 22.3 dm6mol?2s?1 respectively at 298 K for A+ = Na+ while Ka for the hydrogen sulphite ion was determined as 2.4 x 10?8 mol dm?3. It was established that the reaction proceeds via an outer-sphere mechanism. An explanation for the alkali metal ion catalysis is proposed.  相似文献   

17.
Carbonic anhydrases (CAs) have been given much attention as biocatalysts for CO2 sequestration process because of their ability to convert CO2 to bicarbonate. Here, we expressed codon-optimized sequence of ??-type CA cloned from Dunaliella species (Dsp-aCAopt) and characterized its catalyzing properties to apply for CO2 to calcite formation. The expressed amount of Dsp-aCAopt in Escherichia coli is about 50?mg/L via induction of 1.0?mM isopropyl-??-d-thiogalactopyranoside at 20?°C (for the case of intact Dsp-aCA, negligible). Dsp-aCAopt enzyme shows 47?°C of half-denaturation temperature and show wide pH stability (optimum pH 7.6/10.0). Apparent values of K m and V max for p-nitrophenylacetate substrate are 0.91?mM and 3.303?×?10?5???M?min?1. The effects of metal ions and anions were investigated to find out which factors enhance or inhibit Dsp-aCAopt activity. Finally, we demonstrated that Dsp-aCAopt enzyme can catalyze well the conversion of CO2 to CaCO3, as the calcite form, in the Ca2+ solution [8.9?mg/100???g (172?U/mg enzyme) with 10?mM of Ca2+]. The obtained expression and characterization results of Dsp-aCAopt would be usefully employed for the development of efficient CA-based system for CO2-converting/capturing processes.  相似文献   

18.
The kinetics of the initiated oxidation of acrylic acid and methyl methacrylate in the liquid phase were studied volumetrically by measuring oxygen uptake during the reaction. Both processes proceed via the chain mechanism with quadratic-law chain termination. The oxidation rate is described by the equation w = k 2/(2k 6)1/2[monomer]w i 1/2 , where w i is the initiation rate and k 2 and k 6 are the rate constants of chain propagation and termination. The parameter k 2/(2k 6)1/2 is 7.58 × 10?4 (l mol?1 s?1)1/2 for acrylic acid oxidation and 2.09 × 10?3 (l mol?1 s?1)1/2 for the oxidation of methyl methacrylate (T = 333 K). For the oxidation of acrylic acid, k 2 = 2.84 l mol?1 s?1 (T = 333 K) and the activation energy is E 2 = 54.5 kJ/mol; for methyl methacrylate oxidation, k 2 = 2.96 l mol?1 s?1 (T = 333 K) and E 2 = 54.4 kJ/mol. The enthalpies of the reactions of RO 2 ? with acrylic acid and methyl methacrylate were calculated, and their activation energies were determined by the intersecting parabolas method. The contribution from the polar interaction to the activation energy was determined by comparing experimental and calculated E 2 values: ΔE μ = 5.7 kJ/mol for the reaction of RO 2 ? with acrylic acid and ΔE μ = 0.9 kJ/mol for the reaction of RO 2 ? with methyl methacrylate. Experiments on the spontaneous oxidation of acrylic acid provided an estimate of the rate of chain initiation via the reaction of oxygen with the monomer: w i,0 = (3.51 ± 0.85) × 10?11 mol l?1 s?1 (T = 333 K).  相似文献   

19.
Thermal properties of [cis-(dithiocyanato)(4,5-diazafluoren-9-one)(4,4??-dicarboxy-2,2??-bipyridyl)ruthenium(II)], [Ru(L 1)(L 2)(NCS)2] (where the ligands L 1?=?4,5-diazafluoren-9-one, L 2?=?4,4??-dicarboxy-2,2??-bipyridyl) have been investigated by DTA/TG/DTG measurements under inert atmosphere in the temperature range of 30?C1155?°C. The mass spectroscopy technique has been used to identify the products during pyrolytic decomposition. The pyrolytic final products have been analyzed by X-ray powder diffraction technique. A decomposition mechanism has been also suggested for the cis-[Ru(L 1)(L 2)(NCS)2] complex based on the results of thermogravimetrical and mass analysis. The values of the activation energy, E* have been obtained by using model-free Kissenger?CAkahira?CSunose and Flyn?CWall?COzawa non-isothermal methods for all decomposition stages. Thirteen kinetic model equations have been tested for selecting the best reaction models. The best model equations have been determined as A2, A3, D1, and D2 which correspond to nucleation and growth mechanism for A2 and A3 and diffusion mechanism for D1 and D2. The optimized average values of E* are 31.35, 58.48, 120.85, and 120.56?kJ?mol?1 calculated by using the best model equations for four decomposition stages, respectively. Also, the average Arrhenius factor, A, has been obtained as 2.21, 2.61, 2.52, and 2.21?kJ?mol?1 using the best model equation for four decomposition stages, respectively. The ??H*, ??S*, and ??G* functions have been calculated using the optimized values.  相似文献   

20.
The potential energy surface for the reaction of hydrogen atom with carbon dioxide is explored by using various quantum chemical methods including W1BD, CBS-QB3, G4, G3B3, CCSD(T), QCISD(T), CCSD, M06-2X, and BB1K.Transition state theory and a modified strong collision/RRKM model are employed to calculate the thermal rate coefficients for the reaction. The results of calculation show that the overall rate constant for the reaction H + CO2 are pressure-independent over the temperature range of 300 to 3500 K. By using the energies at the W1BD level, the non-Arrhenius expression k = 9.8T 2.9exp(?74.8 kJ/mol/RT) L mol?1 s?1 was found for the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号