首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MgO掺杂Ce_(0.9)Sm_(0.1)O_(2-δ)固体电解质的结构和电性能   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法合成SiO2含量为5.0×10-4(w)的Ce0.9Sm0.1O2-δ(SDC)粉体(SDCSi),并将0-3.0%(x)MgO分别加入到SDCSi陶瓷粉体中,用X射线衍射(XRD)和场发射扫描电子显微镜(FE-SEM)对材料进行表征,用交流阻抗谱(AC)测试材料的电性能.结果表明:MgO掺杂能使SDCSi的烧结温度降低100-200℃,提高陶瓷材料的致密度;清除或降低陶瓷材料晶界处SiO2杂质的有害影响,显著提高晶粒/晶界电导率和总电率;MgO掺杂到SDCSi具有烧结助剂和晶界杂质清除剂的双重作用.  相似文献   

2.
This report describes a study of the effect of SiO2 nanopowders on the mechanism of ionic motion and interactions taking place in hybrid inorganic-organic membranes based on Nafion. Five nanocomposite membranes of the formula [Nafion/(SiO2)x] with SiO2 ranging from 0 to 15 wt % were prepared by a solvent casting procedure. TG measurements demonstrated that the membranes are thermally stable up to 170 degrees C but with the loss water it changes the cluster environments and changes the conductivity properties. MDSC investigations in the 90-300 degrees C temperature range revealed the presence of three intense overlapping endothermal peaks indicated as I, II, and III. Peak I measures the order-disorder molecular rearrangement in hydrophilic polar clusters, II corresponds to the endothermic decomposition of -SO3 groups, and III describes the melting process in microcrystalline regions of hydrophobic fluorocarbon domains of the Nafion moiety. ESEM with EDAX measurements revealed that the membranes are homogeneous materials with smooth surfaces. DMA studies allowed us to measure two relaxation modes. The mechanical relaxation detected at ca. 100 degrees C is attributed to the motion of cluster aggregates of side chains and is diagnostic for R-SO3H...SiO2 nanocluster interactions. DMA disclosed that at SiO2/-SO3H (psi) molar ratios lower than 1.9, the oxoclusters act to restrict chain mobility of hydrophobic domains of Nafion and the dynamics inside polar cages of [Nafion/(SiO2)x] systems; at psi higher than 1.9, the oxoclusters reduce the cohesiveness of hydrophilic polar domains owing to a reduction in the density of cross-links. FT-IR and FT-Raman studies of the [Nafion/(SiO2)x] membranes indicated that the fluorocarbon chains of Nafion hydrophobic domains assume the typical helical conformation structure with a D(14pi/15) symmetry. These analyses revealed four different species of water domains embedded inside polar cages and their interconnecting channels: (a) bulk water [(H2O)n]; (b) water solvating the oxonium ions directly interacting with sulfonic acid groups [H3O+...SO3(-)-].(H2O)n; (c) water aggregates associated with H3O+ ions [H3O+.(H2O)n]; and (d) low associated water species in dimer form [(H2O)2]. The conductivity mechanism and relaxation events were investigated by broadband dielectric spectroscopy (BDS). [Nafion/(SiO2)x] nanocomposite membranes were found to possess two different molecular relaxation phenomena which are associated with the alpha-relaxation mode of PTFE-like fluorocarbon domains and the beta-relaxation mode of acid side groups of the Nafion component. Owing to their strong coupling, both these relaxation modes are diagnostic for the interactions between the polar groups of the Nafion host polymer and the (SiO2)x oxoclusters and play a determining role in the conductivity mechanism of the membranes. The studies support the proposal that long-range proton charge transfer in [Nafion/(SiO2)x] composites takes place due to a mechanism involving exchange of the proton between the four water domains. This latter proton transfer occurs owing to a subsequent combination of domain intersections resulting from the water domain fluctuations induced by the molecular relaxation events of host Nafion polymer.  相似文献   

3.
By utilizing a variety of surface superstructures formed on silicon surfaces and atomic layers grown on them, close correlations between the atomic-scale structures and electrical conduction phenomena at the surfaces have been revealed. State-of-art techniques for analyzing and controlling atomic/electronic structures of surfaces are leading to an understanding of the novel electronic transport properties at surfaces. For example, the electrical conduction through surface-state bands, which are inherent in the surface superstructure, has been confirmed in in-situ measurements. An important phenomenon has also been found, where adatoms donate carriers into the surface-state band, resulting in a remarkable enhancement in electrical conductance. The nucleation of the adatoms diminishes such a doping effect. Furthermore, electrical conduction through atomic layers grown on the surfaces, whose growth structures are sensitive to the substrate surface structures, will be also discussed. In this review, we emphasize that the surface electronic transport properties are closely related to the atomic structures and atomistic dynamics on surfaces. The ultimate two-dimensional electron systems, consisting of the surface-state bands and grown atomic layers, are expected to provide a new stage in surface physics, as well as a precursory stage leading to atomic-scale electronics devices.  相似文献   

4.
The effect of SiO(x) monolayer coverage on the rate of TiO(2) photocatalytic oxidation of cetylpyridinium bromide (CPB) in aqueous solutions has been studied. The rate of CPB removal from the solution (5相似文献   

5.
Reactions of Al(III) at the interface between SiO2(s) and aqueous solution were characteristically and quantitatively studied using electrophoretic methods and applying a surface complexation/precipitation model (SCM/SPM). The surface and bulk properties of Al(III)/SiO2 suspensions were determined as functions of pH and initial Al(III) concentration. Simulated modeling results indicate that the SCM, accounting for the adsorption mechanism, predicts sorption data for low surface coverage only reasonably well. Al(III) hydrolysis and surface hydroxide precipitation must be invoked as the Al(III) concentration and/or pH progressively increase. Accordingly, the three processes in the Al(III) sorption continuum, from adsorption through hydrolysis to surface precipitation, could be identified by the divergence between the SCM/SPM predictions and the experimental data. SiO2(s) suspensions with low Al(III) concentrations (1 x 10(-4) and 1 x 10(-5) M) exhibit electrophoretic behavior similar to that of a pure SiO2(s) system. In Al(III)/SiO2 systems with high Al concentrations of 1 x 10(-3), 5 x 10(-3) and 1 x 10(-2) M, three charge reversals (CR) are observed, separately representing, in order of increasing pH, the point of zero charge (PZC) on the SiO2 substrate (CR1), the onset of the surface precipitation of Al hydroxide (CR2), and at a high pH, the PZC of the Al(OH)3 coating (CR3). Furthermore, in the 1 x 10(-3) M Al(III)/SiO2(s) system, CR2 is consistent with the modeling results of SCM/SPM and provides evidence that Al(III) forms a surface precipitate on SiO2(s) at pH above 4. SiO2(s) dissolution was slightly inhibited when Al(III) was adsorbed onto the surface of SiO2(s), as compared to the dissolution that occurs in a pure SiO2(s) suspension system. Al hydroxide surface precipitation dramatically reduced the dissolution of SiO2(s) because the Al hydroxide passive film inhibited the corrosion of the SiO2(s) surface by OH- ions.  相似文献   

6.
Ultrathin tin oxide films were deposited on SiO2 nanoparticles using atomic layer deposition (ALD) techniques with SnCl4 and H2O2 as the reactants. These SnO(x) films were then exposed to O2 and CO gas pressure at 300 degrees C to measure and understand their ability to serve as CO gas sensors. In situ transmission Fourier transform infrared (FTIR) spectroscopy was used to monitor both the charge conduction in the SnO(x) films and the gas-phase species. The background infrared absorbance measured the electrical conductivity of the SnO(x) films based on Drude-Zener theory. O2 pressure was observed to decrease the SnO(x) film conductivity. Addition of CO pressure then increased the SnO(x) film conductivity. Static experiments also monitored the buildup of gas-phase CO2 reaction products as the CO reacted with oxygen species. These results were consistent with both ionosorption and oxygen-vacancy models for chemiresistant semiconductor gas sensors. Additional experiments demonstrated that O2 pressure was not necessary for the SnO(x) films to detect CO pressure. The background infrared absorbance increased with CO pressure in the absence of O2 pressure. These results indicate that CO can produce oxygen vacancies on the SnO(x) surface that ionize and release electrons that increase the SnO(x) film conductivity, as suggested by the oxygen-vacancy model. The time scale of the response of the SnO(x) films to O2 and CO pressure was also measured by using transient experiments. The ultrathin SnO(x) ALD films with a thickness of approximately 10 A were able to respond to O2 within approximately 100 s and to CO within approximately 10 s. These in situ transmission FTIR spectroscopy help confirm the mechanisms for chemiresistant semiconductor gas sensors.  相似文献   

7.
用X射线衍射分析、FT-IR、小角X光散射等方法研究了浸渍法制备的NiO/SiO_2和NiO/(La_2O_3+SiO_2)样品中组分之间的相互作用。La_2O_3在SiO_2上可形成近乎密置单层的分散。在负载了La_2O_3的SiO_2上,NiO的分散程度比在SiO_2上有明显提高,也更容易被还原,而且还原后所得金属镍粒子的平均粒度降低,小粒子所占百分比提高。这些结果表明,NiO/(La_2O_3+SiO_2)比NiO/SiO_2样品具有更高的加氢还原硝基普鲁卡因为胺基普鲁卡因的活性,与Ni/(La_2O_3+SiO_2)比Ni/SiO_2活性高的情形相一致。  相似文献   

8.
In this paper we report the successful synthesis of the cubic oxyanion containing perovskites, Ba(2)Sc(2-x)P(x)O(5+x) (x = 0.4, 0.5), with the samples analysed through a combination of X-ray diffraction, NMR, TGA, Raman spectroscopy and conductivity measurements. Conductivity measurements indicate a p-type contribution to the conductivity in oxidizing conditions at elevated temperatures, with evidence for proton conduction in wet atmospheres. For the latter, bulk conductivities of 5.9 × 10(-3) and 1.3 × 10(-3) S cm(-1) at 500 °C were obtained for x = 0.4 and 0.5 respectively, comparable to other perovskite proton conductors, while the stability towards CO(2) containing atmospheres was improved compared to BaCeO(3) based systems. Related Si doped systems have also been prepared, although in this case small Ba(2)SiO(4) impurities are observed. We also provide evidence to suggest that "undoped" Ba(2)Sc(2)O(5) contains carbonate groups, which accounts for its thermal instability.  相似文献   

9.
高压Na2O-SiO2系输运性质反常的分子模拟   总被引:1,自引:0,他引:1  
在6000 K, 0~100 GPa范围内,对一系列Na2O-SiO2二元系进行了分子动力学模拟.这些体系包括SiO2、Na2O•10SiO2、Na2O•5SiO2、Na2O•2SiO2、Na2O•SiO2、2Na2O•SiO2.模拟结果显示,在前4个体系中,氧扩散系数随压力变化反常.在 Na2O•10SiO2, Na2O•5SiO2, Na2O•2SiO2 中,硅的扩散系数随压力变化也出现反常.在这些体系中, 20 GPa处氧的扩散系数比常压下高出一个数量级.在上述各体系中,氧扩散系数随压力变化的峰值都在20 GPa处,以前报导的SiO2体系中氧扩散系数随压力变化的峰值在30 GPa处.还观察到,在SiO2体系中,氧扩散系数最大值大致相当于硅-氧配位数以五配位为主;而在Na2O•10SiO2体系中,氧扩散系数最大值大致相当于硅-氧配位数以六配位为主.  相似文献   

10.
Protonic conduction in 10P2O5·90SiO2 and 20P2O5·80SiO2 (mol %) glasses prepared by sol-gel processing was investigated as a function of the content of molecular water adsorbed in the pores. The results show that the electrical conductivity of the glasses containing adsorbed molecular water varies exponentially with the reciprocal absolute temperature and increases with the increase of the content of the adsorbed molecular water. The double-bonded oxygen and the high affinity of phosphorus for oxygen make protons easily to release and transfer, which is favorable to the protonic conductivity.  相似文献   

11.
Density functional theory combined with nonequilibrium Green's function techniques was used to model the conduction through disubstituted benzenedithiol molecules bonded to leads composed of 3x3, 5x5 gold and 3x3 aluminum. For the disubstituted 3x3 Au-benzenedithiol-Au systems, the small lead cross section results in a region of nearly zero transmission from -0.4 to -0.2 eV, relative to E(F), due to the absence of lead states. This feature results in negative differential resistance in the current-voltage curves and also causes the main peaks in the transmission spectra, which are dominated by the highest occupied molecular orbitals, to be centered near E(F). The zero-bias transmissions for the disubstituted benzenedithiol, as well as currents at applied biases, correlate very well with the Hammett parameter sigma(p), a quantity that relates the electron donating or withdrawing strength of a substituent. Calculations on disubstituted benzenedithiol connected to 5x5 Au leads produced transmission spectra that showed no gaps over the energy range considered and no negative differential resistance. The transmission in these cases also predominately involves the highest occupied molecular orbitals, and electron donating and withdrawing groups are able to increase and decrease current, respectively. However, there is no strong correlation between current and sigma(p) for this system. This suggests that the correlation observed in the 3x3 Au systems arises from the abrupt cutoff of the main transmission peaks near E(F). The disubstituted 3x3 Al-benzenedithiol-Al systems displayed markedly different behavior from the Au analogs. Electron donating groups and H benzenedithiol-substituted systems display almost no transmission over the energy range considered. However, electron withdrawing group disubstituted benzenedithiol systems had significant peaks in the transmission spectra near E(F), which are associated with the lowest-energy, unoccupied pi-type molecular orbitals. Higher currents are calculated for cases where the substituents have pi-type orbitals that are conjugated with the ring moiety of benzenedithiol. In all cases, the current through the 3x3 Al-benzenedithiol-Al systems is about a factor of 2 less than that through the analogous Au systems. These simulations reveal that the electrical conductance behavior through nanosystems of the type investigated in this work depends on the nature of the molecule as well as the size and composition of the leads to which it is connected. The results suggest that rational design of nanoelectronic systems might be possible under certain conditions but that structure-function relationships cannot be transferred from one system to another.  相似文献   

12.
The reaction of [([triple bond]SiO)Zr(CH(2)tBu)(3)] with H(2) at 150 degrees C leads to the hydrogenolysis of the zirconium-carbon bonds to form a very reactive hydride intermediate(s), which further reacts with the surrounding siloxane ligands present at the surface of this support to form mainly two different zirconium hydrides: [([triple bond]SiO)(3)Zr-H] (1a, 70-80%) and [([triple bond]SiO)(2)ZrH(2)] (1b, 20-30%) along with silicon hydrides, [([triple bond]SiO)(3)SiH] and [([triple bond]SiO)(2)SiH(2)]. Their structural identities were identified by (1)H DQ solid-state NMR spectroscopy as well as reactivity studies. These two species react with CO(2) and N(2)O to give, respectively, the corresponding formate [([triple bond]SiO)(4-x)Zr(O-C(=O)H)(x)] (2) and hydroxide complexes [([triple bond]SiO)(4-x)Zr(OH)(x)] (x = 1 or 2 for 3a and 3b, respectively) as major surface complexes.  相似文献   

13.
DFT(B3PW91) calculations have been carried out to propose a pathway for the N(2) cleavage by H(2) in the presence of silica-supported tantalum hydride complexes [(≡SiO)(2)TaH(x)] that forms [(≡SiO)(2)Ta(NH)(NH(2))] (Science 2007, 317, 1056). The calculations, performed on the cluster models {μ-O[(HO)(2)SiO](2)}TaH(1) and {μ-O[(HO)(2)SiO](2)}TaH(3), labelled as (≡SiO)(2)TaH(x) (x = 1, 3), show that the direct hydride transfers to coordinated N-based ligands in (≡SiO)(2)TaH(η(2)-N(2)) and (≡SiO)(2)TaH(η(2)-HNNH) have high energy barrier barriers. These high energy barriers are due in part to a lack of energetically accessible empty orbitals in the negatively charged N-based ligands. It is shown that a succession of proton transfers and reduction steps (hydride transfer or 2 electron reduction by way of dihydride reductive coupling) to the nitrogen-based ligands leads to more energetically accessible pathways. These proton transfers, which occur by way of heterolytic activation of H(2), increase the electrophilicity of the resulting ligand (diazenido, N(2)H(-), and hydrazido, NHNH(2)(-), respectively) that can thus accept a hydride with a moderate energy barrier. In the case of (≡SiO)(2)TaH(η(2)-HNNH), the H(2) molecule that is adding across the Ta-N bond is released after the hydride transfer step by heterolytic elimination from (≡SiO)(2)TaH(NH(2))(2), suggesting that dihydrogen has a key role in assisting the final steps of the reaction without itself being consumed in the process. This partly accounts for the experimental observation that the addition of H(2) is needed to convert an intermediate, identified as a diazenido complex [(≡SiO)(2)TaH(η(2)-HNNH)] from its ν(N-H) stretching frequency of 3400 cm(-1), to the final product. Throughout the proposed mechanism, the tantalum remains in its preferred high oxidation state and avoids redox-type reactions, which are more energetically demanding.  相似文献   

14.
SiO2骨架支撑MoOx催化剂用于正庚烷异构化反应   总被引:3,自引:0,他引:3  
 采用SEM,XRD,EDS及N2吸附-脱附方法研究了骨架型MoOx-SiO2催化剂和负载型MoOx/SiO2催化剂的物理化学结构,并在常压固定床流动反应器上考察了两种催化剂对正庚烷异构化反应的催化性能.结果表明,在MoOx-SiO2催化剂中,44.6%的SiO2即可起到很好的骨架支撑作用;MoOx晶相以足够大的空间区域聚集包裹在SiO2骨架中,形成类似MoOx催化剂的独特的中孔结构.与MoOx催化剂相比,MoOx-SiO2催化剂显著提高了机械强度,并维持了MoOx催化剂较高的活性和选择性.由于钼物种和载体之间的相互作用,负载型MoOx/SiO2催化剂表现出较低的比活性.脉冲注入H2S实验结果表明,MoOx-SiO2催化剂具有较好的抗硫性能.  相似文献   

15.
Li3Sc2(PO4)3因具有有利的离子传导通道、低的电子电导率和高的稳定性而成为全固态锂离子电池用固体电解质最具竞争力的材料之一,然而这一化合物只有在245℃以上的γ相才具有快离子传导特性。人们主要采用Zr4+、Ti4+等阳离子部分取代其中的Sc3+以改善材料的室温电导率,有关该化合物PO43-阴离子替代的报道还很少。本研究试图利用机械研磨技术,通过向Li3Sc2(PO4)3原料混合物中加入适量SiO2,以期能够实现对该化合物的部分阴离子替代。研究结果表明:所制备的Li3+xSc2(PO4)3-x(SiO4)x(x=0~0.6)系列化合物在x=0.15时电导率达到最大值,σ298=9.55×10-4 S.m-1,离子传导激活能达到最小值45.06 kJ.mol-1。29Si MAS-NMR测试结果证实所加入的SiO2主要以[SiO4]四面体形式存在替代Li3Sc2(PO4)3中部分[PO4]四面体。  相似文献   

16.
An electrical impedance spectroscopy (EIS) method for measuring changes in the electrical properties of synthetic membranes is investigated as a possible way of monitoring, in situ, the separation performance of these membranes including membrane fouling. Unlike other EIS methods, which require traditional electrodes in the feed and permeate solutions, alternating current is injected directly into the membrane via external electrical contacts with the edges of the membrane. A metal layer sputtered onto the surface of the membrane can be used to enhance its conduction properties. The impedance models of these systems is shown to be sensitive to membrane surface properties, including porosity, as well as electrical properties of solutions and the interfacial regions between the membrane surfaces and the solutions. The investigation indicates that fouling along the surface of the membrane might be more readily detectable than inside the pores.  相似文献   

17.
Atomic force microscopy probe-induced large-area ultrathin SiO(x) (x ≡ O/Si content ratio and x > 2) protrusions only a few nanometers high on a SiO(2) layer were characterized by scanning photoemission microscopy (SPEM) and X-ray photoemission spectroscopy (XPS). SPEM images of the large-area ultrathin SiO(x) protrusions directly showed the surface chemical distribution and chemical state specifications. The peak intensity ratios of the XPS spectra of the large-area ultrathin SiO(x) protrusions provided the elemental quantification of the Si 2p core levels and Si oxidation states (such as the Si(4+), Si(3+), Si(2+), and Si(1+) species). The O/Si content ratio (x) was evidently determined by the height of the large-area ultrathin SiO(x) protrusions.  相似文献   

18.
A quantitative method based on UV-vis diffuse reflectance spectroscopy (DRS) was developed that allows determination of the fraction of monomeric and polymeric VO(x) species that are present in vanadate materials. This new quantitative method allows determination of the distribution of monomeric and polymeric surface VO(x) species present in dehydrated supported V(2)O(5)/SiO(2), V(2)O(5)/Al(2)O(3), and V(2)O(5)/ZrO(2) catalysts below monolayer surface coverage when V(2)O(5) nanoparticles are not present. Isolated surface VO(x) species are exclusively present at low surface vanadia coverage on all the dehydrated oxide supports. However, polymeric surface VO(x) species are also present on the dehydrated Al(2)O(3) and ZrO(2) supports at intermediate surface coverage and the polymeric chains are the dominant surface vanadia species at monolayer surface coverage. The propane oxidative dehydrogenation (ODH) turnover frequency (TOF) values are essentially indistinguishable for the isolated and polymeric surface VO(x) species on the same oxide support, and are also not affected by the Br?nsted acidity or reducibility of the surface VO(x) species. The propane ODH TOF, however, varies by more than an order of magnitude with the specific oxide support (ZrO(2) > Al(2)O(3) > SiO(2)) for both the isolated and polymeric surface VO(x) species. These new findings reveal that the support cation is a potent ligand that directly influences the reactivity of the bridging V-O-support bond, the catalytic active site, by controlling its basic character with the support electronegativity. These new fundamental insights about polymerization extent of surface vanadia species on SiO(2), Al(2)O(3), and ZrO(2) are also applicable to other supported vanadia catalysts (e.g., CeO(2), TiO(2), Nb(2)O(5)) as well as other supported metal oxide (e.g., CrO(3), MoO(3), WO(3)) catalyst systems.  相似文献   

19.
The interaction of light with molecular conduction junctions is attracting growing interest as a challenging experimental and theoretical problem on one hand, and because of its potential application as a characterization and control tool on the other. It stands at the interface between two important fields, molecular electronics and molecular plasmonics and has attracted attention as a challenging scientific problem with potentially important technological consequences. Here we review the present state of the art of this field, focusing on several key phenomena and applications: using light as a switching device, using light to control junction transport in the adiabatic and non-adiabatic regimes, light generation in biased junctions and Raman scattering from such systems. This field has seen remarkable progress in the past decade, and the growing availability of scanning tip configurations that can combine optical and electrical probes suggests that further progress towards the goal of realizing molecular optoelectronics on the nanoscale is imminent.  相似文献   

20.
La10(SiO4)6-x(GaO4)xO3-0.5x的合成及其导电性能   总被引:1,自引:0,他引:1  
王贵领  赵辉  霍丽华  高山 《化学学报》2008,66(12):1411-1416
以溶胶-凝胶法合成前驱体, 在950 ℃时烧结制得La10(SiO4)6-x(GaO4)xO3-0.5x (x=0, 0.5, 1.0, 1.5和2.0)陶瓷样品, 通过TG-DTA, XRD, IR和SEM表征, 所得产品为磷灰石相. 以电化学阻抗谱研究了其导电性能, 发现决定电导率大小的因素有两种, 一是间隙氧的数量, 二是晶胞的大小, 两种因素的综合作用, 使得La10(SiO4)5(GaO4)O2.5的电导率最大, 在700 ℃时其电导率达到4.66×10-2 S•cm-1. 离子迁移数和氧分压对电导率的研究表明, 其主要的电荷载体是O2-离子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号