首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ligand L(bip), containing two bidentate pyrazolyl-pyridine termini separated by a 3,3'-biphenyl spacer, has been used to prepare tetrahedral cage complexes of the form [M(4)(L(bip))(6)]X(8), in which a bridging ligand spans each of the six edges of the M(4) tetrahedron. Several new examples have been structurally characterized with a variety of metal cation and different anions in order to examine interactions between the cationic cage and various anions. Small anions such as BF(4)(-) and NO(3)(-) can occupy the central cavity where they are anchored by an array of CH···F or CH···O hydrogen-bonding interactions with the interior surface of the cage, but larger anions such as naphthyl-1-sulfonate or tetraphenylborate lie outside the cavity and interact with the external surface of the cage via CH···π interactions or CH···O hydrogen bonds. The cages with M = Co and M = Cd have been examined in detail by NMR spectroscopy. For [Co(4)(L(bip))(6)](BF(4))(8) the (1)H NMR spectrum is paramagnetically shifted over the range -85 to +110 ppm, but the spectrum has been completely assigned by correlation of measured T(1) relaxation times of each peak with Co···H distances. (19)F DOSY measurements on the anions show that at low temperature a [BF(4)](-) anion diffuses at a similar rate to the cage superstructure surrounding it, indicating that it is trapped inside the central cage cavity. Furthermore, the equilibrium step-by-step self-assembly of the cage superstructure has been elucidated by detailed modeling of spectroscopic titrations at multiple temperatures of an acetonitrile solution of L(bip) into an acetonitrile solution of Co(BF(4))(2). Six species have been identified: [Co(2)L(bip)](4+), [Co(2)(L(bip))(2)](4+), [Co(4)(L(bip))(6)](8+), [Co(4)(L(bip))(8)](8+), [Co(2)(L(bip))(5)](4+), and [Co(L(bip))(3)](2+). Overall the assembly of the cage is entropy, and not enthalpy, driven. Once assembled, the cages show remarkable kinetic inertness due to their mechanically entangled nature: scrambling of metal cations between the sites of pure Co(4) and Cd(4) cages to give a statistical mixture of Co(4), Co(3)Cd, Co(2)Cd(2), CoCd(3) and Cd(4) cages takes months in solution at room temperature.  相似文献   

2.
The tetradentate imino-carboxylate ligand [L](2)(-) chelates the equatorial sites of Ni(II) to give the complex [Ni(L)(MeOH)(2)] in which a Ni(II) center is bound in an octahedral coordination environment with MeOH ligands occupying the axial sites. Lanthanide (Ln) and Group II metal ions (M) template the aggregation of six [Ni(L)] fragments into the octahedral cage aggregates (M[Ni(L)](6))(x)(+) (1: M = Sr(II); x = 2,2: M = Ba(II); x = 2, 3: M = La(III); x = 3, 4: M = Ce(III); x = 3, 5: M = Pr(III); x = 3, and 6: M = Nd(III); x = 3). In the presence of Group I cations, however, aggregates composed of the alkali metal-oxide cations template various cage compounds. Thus, Na(+) forms the trigonal bipyramidal [Na(5)O](3+) core within a tricapped trigonal prismatic [Ni(L)](9) aggregate to give ((Na(5)O) subset [Ni(L)](9)(MeOH)(3))(BF(4))(2).OH.CH(3)OH, 7. Li(+) and Na(+) together form a mixed Li(+)/Na(+) core comprising distorted trigonal bipyramidal [Na(3)Li(2)O](3+) within an approximately anti-square prismatic [Ni(L)](8) cage in ((Na(3)Li(2)O) subset [Ni(L)](8)(CH(3)OH)(1.3)(BF(4))(0.7))(BF(4))(2.3).(CH(3)OH)(2.75).(C(4)H(10)O)(0.5), 8, while in the presence of Li(+), a tetrahedral [Li(4)O](2+) core within a hexanuclear open cage [Ni(L)](6) in ((Li(4)O) subset [Ni(L)](6)(CH(3)OH)(3))2ClO(4).1.85CH(3)OH, 9, is produced. In the presence of H(2)O, the Cs(+) cation induces the aggregation of the [Ni(L)(H(2)O)(2)] monomer to give the cluster Cs(2)[Ni(L)(H(2)O)(2)](6).2I.4CH(3)OH.5.25H(2)O, 10. Analysis by electronic spectroscopy and mass spectrometry indicates that in solution the trend in stability follows the order 1-6 > 7 > 8 approximately 9. Magnetic susceptibility data indicate that there is net antiferromagnetic exchange between magnetic centers within the cages.  相似文献   

3.
The two new ligands L(fur) and L(th) consist of two chelating pyrazolyl-pyridine termini connected to furan-2,5-diyl or thiophene-2,5-diyl spacers via methylene groups. Reaction of these with a range of transition metal dications that prefer octahedral coordination affords a series of unusual structures which are all based on a 2M : 3L ratio. [M(8)(L(fur))(12)]X(16) (M = Co, Cu, X = BF(4); and M = Zn, X = ClO(4)) are octanuclear cubes with approximate D(4) symmetry in which two cyclic tetranuclear helicate M(4)L(4) units are connected by four additional 'pillar' ligands. In contrast [Ni(4)(L(fur))(6)](BF(4))(8) is a centrosymmetric molecular square consisting of two dinuclear Ni(2)L(2) units of opposite chirality that are connected by a pair of additional L(fur) ligands such that the four edges of the Ni(4) square are spanned by alternately two and one bridging ligands. [M(4)(L(th))(6)](BF(4))(8) (M = Co, Ni, Cu) are likewise molecular squares with similar structures to [Ni(4)(L(fur))(6)](BF(4))(8) with the significant difference that the two crosslinked double helicate M(2)L(2) units are now homochiral. The Cd(II) complexes both behave quite differently to the first-row metal complexes, with [Cd(L(fur))(BF(4))](BF(4)) being a simple mononuclear complex with a single ligand in which the furan oxygen atom is weakly interacting with the Cd(II) centre. In contrast, in {[Cd(2)(L(th))(3)](BF(4))(4)}(∞), where this quasi-pentadentate coordination mode of the ligand is not possible because thiophene is too poor an electron donor, the ligand reverts to bis-bidentate bridging coordination to afford a one-dimensional chain consisting of an infinite sequence of crosslinked, homochiral, Cd(2)(L(th))(2) double helicate units.  相似文献   

4.
The tetradentate ligand L(naph) contains two N-donor bidentate pyrazolyl-pyridine units connected to a 1,8-naphthyl core via methylene spacers; L45 and L56 are chiral ligands with a structure similar to that of L(naph) but bearing pinene groups fused to either C4 and C5 or C5 and C6 of the terminal pyridyl rings. The complexes [Cu(L(naph))](OTf) and [Ag(L(naph))](BF4) have unremarkable mononuclear structures, with Cu(I) being four-coordinate and Ag(I) being two-coordinate with two additional weak interactions (i.e., "2 + 2" coordinate). In contrast, [Cu4(L(naph))4][BF4]4 is a cyclic tetranuclear helicate with a tetrafluoroborate anion in the central cavity, formed by an anion-templating effect; electrospray mass spectrometry (ESMS) spectra show the presence of other cyclic oligomers in solution. The chiral ligands show comparable behavior, with [Cu(L45)](BF4) and [Ag(L45)](ClO4) having similar mononuclear crystal structures and with the ligands being tetradentate chelates. In contrast, [Ag4(L56)4](BF4)4 is a cyclic tetranuclear helicate in which both diastereomers of the complex are present in the crystal; the two diastereomers have similar gross geometries but are significantly different in detail. Despite their different crystal structures, [Ag(L45)](ClO4) and [Ag4(L56)4](BF4)4 behave similarly in solution according to ESMS studies, with a range of cyclic oligomers (up to Ag9L9) forming. With transition-metal dications Co(II), Cu(II), and Cd(II), L(naph) generates a series of unusual dodecanuclear coordination cages [M12(L(naph))18]X24 (X- = ClO4- or BF4-) in which the 12 metal ions occupy the vertices of a truncated tetrahedron and a bridging ligand spans each of the 18 edges. The central cavity of each cage can accommodate four counterions, and each cage molecule is chiral, with all 12 metal trischelates being homochiral; the crystals are racemic. Extensive aromatic stacking between ligands around the periphery of the cages appears to be a significant factor in their assembly. The chiral analogue L45 forms the simpler tetranuclear, tetrahedral coordination cage [Zn4(L45)6](ClO4)(8), with one anion in the central cavity; the steric bulk of the pinene chiral auxiliaries prevents the formation of a dodecanuclear cage, although trace amounts of [Zn12(L45)18](ClO4)24 can be detected in solution by ESMS. Formation of [Zn4(L45)6](ClO4)8 is diastereoselective, with the chirality of the pinene groups controlling the chirality of the tetranuclear cage.  相似文献   

5.
Three angular ditopic ligands (1,3-bis(benzimidazol-1-ylmethyl)-4,6-dimethylbenzene L(1), 1,3-bis(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(2), and 1,4-bis(benzimidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene L(3)) and one tripodal ligand 1,3,5-tris(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(4) have been prepared. Reaction of these shape-specific designed ligands with different metal salts affords a series of discrete molecular architectures: [Ag(2)L(1)(2)](BF(4))(2) 1, [Ag(2)L(2)(2)](CF(3)SO(3))(2) 2, [CF(3)SO(3)(-) subset Ag(2)L(3)(2)]CF(3)SO(3) 3, [CF(3)SO(3)(-) subset Ag(2)L(3)(3)]CF(3)SO(3) 4, [ClO(4)(-) subset Cu(2)L(2)(4)](ClO(4))(3) 5, [4H(2)O subset Ni(2)L(2)(4)Cl(4)].6H(2)O 6, [BF(4)(-) subset Ag(3)L(4)(2)](BF(4))(2) 7, [ClO(4)(-) subset Ag(3)L(4)(2)](ClO(4))(2) 8, and [CuI(3)(2-) subset Cu(3)L(4)(2)](2)[Cu(2)I(4)] 9. The compounds were characterized by elemental analysis, ESI-MS, IR, and NMR spectroscopy, and X-ray crystallography. 1 is a dinuclear metallacycle with 2-fold rotational symmetry in which two syn-conformational L(1) ligands are connected by two linearly coordinated Ag(+) ions. 2 and 3 are structurally related, consisting of rectangular structures assembled from two linearly coordinated Ag(+) ions and two L(2) or L(3) ligands. The structure of 4 is a trigonal prismatic box consisting of two Ag(+) ions in trigonal planar coordination linked by three L(3) ligands, while the structures of 5 and 6 are tetragonal prismatic cages constructed by two square planar Cu(2+) or Ni(2+) ions linked by four L(2) ligands. The topologies of 7-9 are similar to that of 4; however, these three structures are assembled from three linearly coordinated Ag(+) or Cu(+) ions and two tripodal ligands, representing an alternative strategy to assembling a trigonal prism. (1)H NMR and ESI-MS were utilized to elucidate the solution structures of these macrocycles.  相似文献   

6.
Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state between 300 and 1.8 K.  相似文献   

7.
Reaction of the bis-bidentate bridging ligand L(3), in which two bidentate chelating 3(2-pyridyl)pyrazole units are separated by a 3,3'-biphenyl spacer, with Co(II) salts affords tetranuclear cage complexes of composition [Co(4)(L(3))(6)]X(8)(X =[BF(4)](-), [ClO(4)](-), [PF(6)](-) or I(-)) in which four 6-coordinate Co(II) ions in an approximately tetrahedral array are connected by six bis-bidentate bridging ligands, one spanning each of the six edges of the Co(4) tetrahedron. In every case, X-ray crystallography reveals that the 'apical' Co(II) ion has a fac tris-chelate geometry, whereas the other three Co(II) ions have mer tris-chelate geometries, resulting in (non-crystallographic)C(3) symmetry for the cages; that this structure is retained in solution is confirmed by (1)H NMR spectroscopy of the paramagnetic cages. In every case one of the anions is located inside the central cavity of the cage, with the remaining seven outside. We found no clear evidence for an anion-based templating effect. The cage superstructure is sufficiently large to leave gaps in the centres of the faces through which the internal and external anions can exchange. Variable-temperature (19)F NMR spectroscopy was used to investigate the dynamic behaviour of the cages with X =[BF(4)](-) and [PF(6)](-) in MeCN solution: in both cases two separate signals, corresponding to external and internal anions, are clear at 233 K which have coalesced to a single signal at room temperature. Analysis of the linewidth of the minor signal (for the internal anion) at various temperatures below coalescence gave an activation energy for anion exchange of ca. 50 kJ mol(-1) in each case, a figure which suggests that anion exchange can occur via a conformational rearrangement of the cage superstructure in solution rather than opening of the cavity by cleavage of metal-ligand bonds.  相似文献   

8.
Strapping two salicylaldoxime units together with aliphatic α,Ω-aminomethyl links in the 3-position gives ligands which allow the assembly of the polynuclear complexes [Fe(7)O(2)(OH)(6)(H(2)L1)(3)(py)(6)](BF(4))(5)·6H(2)O·14MeOH (1·6H(2)O·14MeOH), [Fe(6)O(OH)(7)(H(2)L2)(3)](BF(4))(3)·4H(2)O·9MeOH (2·4H(2)O·9MeOH) and [Mn(6)O(2)(OH)(2)(H(2)L1)(3)(py)(4)(MeCN)(2)](BF(4))(5)(NO(3))·3MeCN·H(2)O·5py (3·3MeCN·H(2)O·5py). In each case the metallic skeleton of the cluster is based on a trigonal prism in which two [M(III)(3)O] triangles are tethered together via three helically twisted double-headed oximes. The latter are present as H(2)L(2-) in which the oximic and phenolic O-atoms are deprotonated and the amino N-atoms protonated, with the oxime moieties bridging across the edges of the metal triangles. Both the identity of the metal ion and the length of the straps connecting the salicylaldoxime units have a major impact on the nuclearity and topology of the resultant cluster, with, perhaps counter-intuitively, the longer straps producing the "smallest" molecules.  相似文献   

9.
The octanuclear coordination cage [Ni(8)(L(14Naph))(12)](BF(4))(16) has the core structure of a 'cuneane'--a toplogical isomer of a cube--with a metal ion at each of the eight vertices and bridging ligand spanning each of the twelve edges; this is the only possible 8-vertex polyhedron other than a cube that will form a cage in which each metal is connected to three others.  相似文献   

10.
Readily synthesised and functionalised di-1,2,3-triazole "click" ligands are shown to self-assemble into coordinatively saturated, quadruply stranded helical [Pd(2)L(4)](BF(4))(4) cages with Pd(II) ions. The cages have been fully characterised by elemental analysis, HR-ESMS, IR, (1)H, (13)C and DOSY NMR, DFT calculations, and in one case by X-ray crystallography. By exploiting the CuAAC "click" reaction we were able to rapidly generate a small family of di-1,2,3-triazole ligands with different core spacer units and peripheral substituents and examine how these structural modifications affected the formation of the [Pd(2)L(4)](BF(4))(4) cages. The use of both flexible (1,3-propyl) and rigid (1,3-phenyl) core spacer units led to the formation of discrete [Pd(2)L(4)](BF(4))(4) cage complexes. However, when the spacer unit of the di-1,2,3-triazole ligand was a 1,4-substituted-phenyl group steric interactions led to the formation of an oligomeric/polymeric species. By keeping the 1,3-phenyl core spacer constant the effect of altering the "click" ligands' peripheral substituents was also examined. It was shown that ligands with alkyl, phenyl, electron-rich and electron-poor benzyl substituents all quantitatively formed [Pd(2)L(4)](BF(4))(4) cage complexes. The results suggest that a wide range of functionalised palladium(II) "click" cages could be rapidly generated. These novel molecules may potentially find uses in catalysis, molecular recognition and drug delivery.  相似文献   

11.
We have prepared and characterized a new phenol-based compartmental ligand (H(2)L) incorporating 1,4,7-triazacyclononane ([9]aneN(3)), and we have investigated its coordination behavior with Cu(II), Zn(II), Cd(II), and Pb(II). The protonation constants of the ligand and the thermodynamic stabilities of the 1:1 and 2:1 (metal/ligand) complexes with these metal ions have been investigated by means of potentiometric measurements in aqueous solutions. The mononuclear [M(L)] complexes show remarkably high stability suggesting that, along with the large number of nitrogen donors available for metal binding, deprotonated phenolic functions are also involved in binding the metal ion. The mononuclear complexes [M(L)] show a marked tendency to add a second metal ion to afford binuclear species. The formation of complexes [M(2)(H(2)L)](4+) occurs at neutral or slightly acidic pH and is generally followed by metal-assisted deprotonation of the phenolic groups to give [M(2)(HL)](3+) and [M(2)(L)](2+) in weakly basic solutions. The complexation properties of H(2)L have also been investigated in the solid state. Crystals suitable for X-ray structural analysis were obtained for the binuclear complexes [Cu(2)(L)](BF(4))(2).(1)/(2)MeCN (1), [Zn(2)(HL)](ClO(4))(3).(1)/(2)MeCN (2), and [Pb(2)(L)](ClO(4))(2).2MeCN (4). In 1 and 2, the phenolate O-donors do not bridge the two metal centers, which are, therefore, segregated each within an N(5)O-donor compartment. However, in the case of the binuclear complex [Pb(2)(L)](ClO(4))(2).2MeCN (4), the two Pb(II) centers are bridged by the phenolate oxygen atoms with each metal ion sited within an N(5)O(2)-donor compartment of L(2)(-), with a Pb.Pb distance of 3.9427(5) A.  相似文献   

12.
From the system MF(2)/PF(5)/XeF(2)/anhydrous hydrogen fluoride (aHF), four compounds [Sr(XeF(2))(3)](PF(6))(2), [Pb(XeF(2))(3)](PF(6))(2), [Sr(3)(XeF(2))(10)](PF(6))(6), and [Pb(3)(XeF(2))(11)](PF(6))(6) were isolated and characterized by Raman spectroscopy and X-ray single-crystal diffraction. The [M(XeF(2))(3)](PF(6))(2) (M = Sr, Pb) compounds are isostructural with the previously reported [Sr(XeF(2))(3)](AsF(6))(2). The structure of [Sr(3)(XeF(2))(10)](PF(6))(6) (space group C2/c; a = 11.778(6) Angstrom, b = 12.497(6) Angstrom, c = 34.60(2) Angstrom, beta = 95.574(4) degrees, V = 5069(4) Angstrom(3), Z = 4) contains two crystallographically independent metal centers with a coordination number of 10 and rather unusual coordination spheres in the shape of tetracapped trigonal prisms. The bridging XeF(2) molecules and one bridging PF(6)- anion, which connect the metal centers, form complicated 3D structures. The structure of [Pb(3)(XeF(2))(11)](PF(6))(6) (space group C2/m; a = 13.01(3) Angstrom, b = 11.437(4) Angstrom, c = 18.487(7) Angstrom, beta = 104.374(9) degrees, V = 2665(6) Angstrom(3), Z = 2) consists of a 3D network of the general formula {[Pb(3)(XeF(2))(10)](PF(6))(6)}n and a noncoordinated XeF(2) molecule fixed in the crystal structure only by weak electrostatic interactions. This structure also contains two crystallographically independent Pb atoms. One of them possesses a unique homoleptic environment built up by eight F atoms from eight XeF(2) molecules in the shape of a cube, whereas the second Pb atom with a coordination number of 9 adopts the shape of a tricapped trigonal prism common for lead compounds. [Pb(3)(XeF(2))(11)](PF(6))(6) and [Sr(3)(XeF(2))(10)](PF(6))(6) are formed when an excess of XeF(2) is used during the process of the crystallization of [M(XeF(2))(3)](PF(6))(2) from their aHF solutions.  相似文献   

13.
A series of picolyl-substituted NHC-bridged triangular complexes of Ag(I) and Cu(I) were synthesized upon reaction of the corresponding ligand precursors, [Him(CH(2)py)(2)]BF(4) (1a), [Him(CH(2)py-3,4-(OMe)(2))(2)]BF(4) (1b), [Him(CH(2)py-3,5-Me(2)-4-OMe)(2)]BF(4) (1c), [Him(CH(2)py-6-COOMe)(2)]BF(4) (1d), and [H(S)im(CH(2)py)(2)]BF(4) (1e), with Ag(2)O and Cu(2)O, respectively. Complexes [Cu(3)(im(CH(2)py)(2))(3)](BF(4))(3) (2a), [Cu(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3) (2b), [Cu(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3), (2c), [Ag(3)(im(CH(2)py-3,4-(OMe)(2))(2))(3)](BF(4))(3), (3b), [Ag(3)(im(CH(2)py-3,5-Me(2)-4-OMe)(2))(3)](BF(4))(3) (3c), [Ag(3)(im(CH(2)py-6-COOMe)(2))(3)](BF(4))(3) (3d), and [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3) (3e) were easily prepared by this method. Complex 2e, [Cu(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), was synthesized by a carbene-transfer reaction of 3e, [Ag(3)((S)im(CH(2)py)(2))(3)](BF(4))(3), with CuCl in acetonitrile. The ligand precursor 1d did not react with Cu(2)O. All complexes were fully characterized by NMR, UV-vis, and luminescence spectroscopies and high-resolution mass spectrometry. Complexes 2a-2c, 2e, and 3b-3e were additionally characterized by single-crystal X-ray diffraction. Each metal complex contains a nearly equilateral triangular M(3) core wrapped by three bridging NHC ligands. In 2a-2c and 2e, the Cu-Cu separations are short and range from 2.4907 to 2.5150 ?. In the corresponding Ag(I) system, the metal-metal separations range from 2.7226 to 2.8624 ?. The Cu(I)-containing species are intensely blue photoluminescent at room temperature both in solution and in the solid state. Upon UV excitation in CH(3)CN, complexes 2a-2c and 2e emit at 459, 427, 429, and 441 nm, whereas in the solid state, these bands move to 433, 429, 432, and 440 nm, respectively. As demonstrated by (1)H NMR spectroscopy, complexes 3b-3e are dynamic in solution and undergo a ligand dissociation process. Complexes 3b-3e are weakly photoemissive in the solid state.  相似文献   

14.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

15.
A series of copper(II) complexes with substituted phenanthroline ligands has been synthesized and characterized electronically and structurally. The compounds that have been prepared include the monosubstituted ligand complexes of the general formula [Cu(5-R-phen)(2)(CH(3)CN)](BF(4))(2), where R = NO(2), Cl, H, or Me, and the disubstituted ligand complex [Cu(5,6-Me(2)-phen)(2)(CH(3)CN)](BF(4))(2). The complexes [Cu(5-NO(2)-phen)(2)(CH(3)CN](BF(4))(2) (1), [Cu(5-Cl-phen)(2)(CH(3)CN)](BF(4))(2) (2), [Cu(o-phen)(2)(CH(3)CN)](BF(4))(2) (3), and [Cu(5-Me-phen)(2)(CH(3)CN)](BF(4))(2) (4) each crystallize in the space group C2/c with compounds 1, 2, and 4 comprising an isomorphous set. The disubstituted complex [Cu(5,6-Me(2)-phen)(2)(CH(3)CN)](BF(4))(2) (5) crystallizes in the space group P2(1)/c. Each structure is characterized by a distorted trigonal bipyramidal arrangement of ligands around the central copper atom with approximate or exact C(2) symmetry. The progression from electron-withdrawing to electron-donating substituents on the phenanthroline ligands correlates with less accessible reduction potentials for the bis-chelate complexes.  相似文献   

16.
A series of dinuclear triple-stranded complexes, [Fe(2)L(3)?X]X(6) [X = BF(4)(-) (1), ClO(4)(-) (2)], [Fe(2)L(3)?SO(4)](2)(SO(4))(5) (3), [Fe(2)L(3)?Br](BPh(4))(6) (4), Fe(2)L(3)(NO(3))Br(6) (5), and [Cu(2)L(3)?NO(3)](NO(3))(6) (6), which incorporate a central cavity to encapsulate different anions, have been synthesized via the self-assembly of iron(II) or copper(II) salts with the N,N'-bis[5-(2,2'-bipyridyl)methyl]imidazolium bromide (LBr) ligand. X-ray crystallographic studies (for 1-4 and 6) and elemental analyses confirmed the cagelike triple-stranded structure. The anionic guest is bound in the cage and shows remarkable influence on the outcome of the self-assembly process with regard to the configuration at the metal centers. The mesocates (with different configurations at the two metal centers) have formed in the presence of large tetrahedral anions, while helicates (with the same configuration at both metal centers) were obtained when using the relatively smaller spherical or trigonal-planar anions Br(-) or NO(3)(-).  相似文献   

17.
A series of functionalized adamantanes: 1,3-bis(1,2,4-triazol-4-yl)(tr(2)ad); 1,3,5-tris(1,2,4-triazol-4-yl)-(tr(3)ad); 1,3,5,7-tetrakis(1,2,4-triazol-4-yl)adamantanes (tr(4)ad) and 3,5,7-tris(1,2,4-triazol-4-yl)-1-azaadamantane (tr(3)ada) were developed as a new family of geometrically rigid polydentate tectons for supramolecular synthesis of framework solids. The coordination compounds were prepared under hydrothermal conditions; their structures reveal a special potential of the triazolyl adamantanes for the generation of highly-connected and open frameworks as well as structures based upon polynuclear metal clusters assembled with short-distance N(1),N(2)-triazole bridges. Complexes [Cd{L}(2)]A·nH(2)O [L = tr(3)ad, A = 2NO(3)(-) (4), CdCl(4)(2-) (5); L = tr(3)ada, A = CdI(4)(2-) (7)] are isomorphous and adopt a layered 3,6-connected structure of CdI(2) type. [{Cu(3)(OH)}(2)(SO(4))(5)(H(2)O)(2){tr(3)ad}(3)]·26H(2)O (6) is a layered polymer based upon Cu(3)(μ(3)-OH) nodes and trigonal tr(3)ad links. In [Cu(3)(OH)(2){tr(3)ada}(2)(H(2)O)(4)](ClO(4))(4) (8), [Cu(2){tr(3)ada}(2)(H(2)O)(3)](SO(4))(2)·7H(2)O (9) and [Cd(2){tr(3)ada}(3)]Cl(4)·28H(2)O (10) (UCl(3)-type net) the organic tripodal ligands bridge polynuclear metal clusters. Complexes [Ag{tr(4)ad}]NO(3)·3.5H(2)O (11) and [Cu{tr(4)ad}(H(2)O)](ClO(4))(2)·3H(2)O (12) have 3D SrAl(2)-type frameworks with the metal ions and adamantane tectons as topologically equivalent tetrahedral nodes, while in [Cd(3)Cl(6){tr(4)ad}(2)]·9H(2)O (13) the ligands bridge trinuclear six-connected Cd(3)Cl(6)(μ-tr)(4)(tr)(2) clusters. In the compounds [Cd(2){tr(2)ad}(4)(H(2)O)(4)](CdBr(4))(2)·2H(2)O (2) and [Cd{tr(2)ad}(4){CdI(3)}(2)]·4H(2)O (3) the bitopic ligands provide simple links between the metal ions, while in [Ag(2){tr(2)ad}(2)](NO(3))(2)·2H(2)O (1) the ligand is tetradentate and generates a 3D framework.  相似文献   

18.
A series of structurally characterized copper complexes of two pyridazine-spaced cryptands in redox states + (I,I), (II,I), (II), (II,II) are reported. The hexaimine cryptand L(I) [formed by the 2 + 3 condensation of 3,6-diformylpyridazine with tris(2-aminoethyl)amine (tren)] is able to accommodate two non-stereochemically demanding copper(I) ions, resulting in [Cu(I)(2)L(I)](BF(4))(2) 1, or one stereochemically demanding copper(II) ion, resulting in [Cu(II)L(I)()](BF(4))(2) 3. Complex 3 crystallizes in two forms, 3a and 3b, with differing copper(II) ion coordination geometries. Addition of copper(I) to the monometallic complex 3 results in the mixed-valence complex [Cu(I)Cu(II)L(I)](X)(3) (X = PF(6)(-), 2a; X = BF(4)(-), 2b) which is well stabilized within this cryptand as indicated by electrochemical studies (K(com) = 2.1 x 10(11)). The structurally characterized, octaamine cryptand L(A), prepared by sodium borohydride reduction of L(I), is more flexible than L(I) and can accommodate two stereochemically demanding copper(II) ions, generating the dicopper(II) cryptate [Cu(II)(2)L(A)](BF(4))(4) 4. Electrochemical studies indicate that L(A) stabilizes the copper(II) oxidation state more effectively than L(I); no copper redox state lower than II,II has been isolated in the solid state using this ligand.  相似文献   

19.
The synthesis and structural analysis (single crystal X-ray data) of two mononuclear ([Cu(L(1))(CN)]BF(4) and [Cu(L(3))(CN)](BF(4))) and three related, cyanide-bridged homodinuclear complexes ([{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O, [{Cu(L(2))}(2)(CN)](BF(4))(3) and [{Ni(L(3))}(2)(CN)](BF(4))(3)) with a tetradentate (L(1)) and two isomeric pentadentate bispidine ligands (L(2), L(3); bispidines are 3,7-diazabicyclo[3.3.1]nonane derivatives) are reported, together with experimental magnetic, electron paramagnetic resonance (EPR), and electronic spectroscopic data and a ligand-field-theory-based analysis. The temperature dependence of the magnetic susceptibilities and EPR transitions of the dicopper(II) complexes, together with the simulation of the EPR spectra of the mono- and dinuclear complexes leads to an anisotropic set of g- and A-values, zero-field splitting (ZFS) and magnetic exchange parameters (Cu1: g(z) = 2.055, g(x) = 2.096, g(y) = 2.260, A(z) = 8, A(x) = 8, A(y) = 195 × 10(-4) cm(-1), Cu2: g and A as for Cu(1) but rotated by the Euler angles α = -6°, β = 100°, D(exc) = -0.07 cm(-1), E(exc)/D(exc) = 0.205 for [{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O; Cu1,2: g(z) = 2.025, g(x) = 2.096, g(y) = 2.240, A(z) = 8, A(x) = 8, A(y) = 190 × 10(-4)cm(-1), D(exc) = -0.159 cm(-1), E(exc)/D(exc) = 0.080 for [{Cu(L(2))}(2)(CN)](BF(4))(3)). Thorough ligand-field-theory-based analyses, involving all micro states and all relevant interactions (Jahn-Teller and spin-orbit coupling) and DFT calculations of the magnetic exchange leads to good agreement between the experimental observations and theoretical predictions. The direction of the symmetric magnetic anisotropy tensor D(exc) in [{Cu(L(2))}(2)(CN)](BF(4))(3) is close to the Cu···Cu vector (22°), that is, nearly perpendicular to the Jahn-Teller axis of each of the two Cu(II) centers, and this reflects the crystallographically observed geometry. Antisymmetric exchange in [{Cu(L(1))}(2)(CN)](BF(4))(3)·1.35 H(2)O causes a mixing between the singlet ground state and the triplet excited state, and this also reflects the observed geometry with a rotation of the two Cu(II) sites around the Cu···Cu axis.  相似文献   

20.
Three 5,5'-dicarbamate-2,2'-bipyridine ligands (L = L(1)-L(3)) bearing ethyl, isopropyl or tert-butyl terminals, respectively, on the carbamate substituents were synthesized. Reaction of the ligands L with the transition metal ions M = Fe(2+), Cu(2+), Zn(2+) or Ru(2+) gave the complexes ML(n)X(2)·xG (1-12, n = 1-3; X = Cl, NO(3), ClO(4), BF(4), PF(6), ?SO(4); G = Et(2)O, DMSO, CH(3)OH, H(2)O), of which [Fe(L(2))(3)???SO(4)]·8.5H(2)O (2), [Fe(L(1))(3)???(BF(4))(2)]·2CH(3)OH (7), [Fe(L(2))(3)???(Et(2)O)(2)](BF(4))(2)·2CH(3)OH (8), [ZnCl(2)(L(1))][ZnCl(2)(L(1))(DMSO)]·2DMSO (9), [Zn(L(1))(3)???(NO(3))(2)]·2H(2)O (10), [Zn(L(2))(3)???(ClO(4))(Et(2)O)]ClO(4)·Et(2)O·2CH(3)OH·1.5H(2)O (11), and [Cu(L(1))(2)(DMSO)](ClO(4))(2)·2DMSO (12) were elucidated by single-crystal X-ray crystallography. In the complexes ML(n)X(2)·xG the metal ion is coordinated by n = 1, 2 or 3 chelating bipyridine moieties (with other anionic or solvent ligands for n = 1 and 2) depending on the transition metal and reaction conditions. Interestingly, the carbamate functionalities are involved in hydrogen bonding with various guests (anions or solvents), especially in the tris(chelate) complexes which feature the well-organized C(3)-clefts for effective guest inclusion. Moreover, the anion binding behavior of the pre-organized tris(chelate) complexes was investigated in solution by fluorescence titration using the emissive [RuL(3)](2+) moiety as a probe. The results show that fluorescent recognition of anion in solution can be achieved by the Ru(II) complexes which exhibit good selectivities for SO(4)(2-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号