首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
唐保祥  任韩 《数学杂志》2015,35(3):626-634
本文研究了4类特殊图完美匹配数目的显式表达式.利用划分,求和,再递推的方法分别给出了图3-n Z4,2-n(2-C6),2-n(2-K4)和3-n(C4-C6)的完美匹配数目的计算公式.  相似文献   

2.
Ki-perfect graphs are a special instance of F - G perfect graphs, where F and G are fixed graphs with F a partial subgraph of G. Given S, a collection of G-subgraphs of graph K, an F - G cover of S is a set of T of F-subgraphs of K such that each subgraph in S contains as a subgraph a member of T. An F - G packing of S is a subcollection S′? S such that no two subgraphs in S′ have an F-subgraph in common. K is F - G perfect if for all such S, the minimum cardinality of an F - G cover of S equals the maximum cardinality of an F - G packing of S. Thus Ki-perfect graphs are precisely Ki-1 - Ki perfect graphs. We develop a hypergraph characterization of F - G perfect graphs that leads to an alternate proof of previous results on Ki-perfect graphs as well as to a characterization of F - G perfect graphs for other instances of F and G.  相似文献   

3.
L. Lovász 《Combinatorica》1983,3(1):105-117
We call a graphmatching-covered if every line belongs to a perfect matching. We study the technique of “ear-decompositions” of such graphs. We prove that a non-bipartite matching-covered graph containsK 4 orK 2K 3 (the triangular prism). Using this result, we give new characterizations of those graphs whose matching and covering numbers are equal. We apply these results to the theory of τ-critical graphs.  相似文献   

4.
In this paper we characterize subclasses of co-graphs defined by restricted NLC-width operations and subclasses of co-graphs defined by restricted clique-width operations.We show that a graph has NLCT-width 1 if and only if it is (C4,P4)-free. Since (C4,P4)-free graphs are exactly trivially perfect graphs, the set of graphs of NLCT-width 1 is equal to the set of trivially perfect graphs, and a recursive definition for trivially perfect graphs follows. Further we show that a graph has linear NLC-width 1 if and only if is (C4,P4,2K2)-free. This implies that the set of graphs of linear NLC-width 1 is equal to the set of threshold graphs.We also give forbidden induced subgraph characterizations for co-graphs defined by restricted clique-width operations using P4, 2K2, and co-2P3.  相似文献   

5.
We consider the problem of clique‐coloring, that is coloring the vertices of a given graph such that no maximal clique of size at least 2 is monocolored. Whereas we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, the existence of a constant C such that any perfect graph is C‐clique‐colorable is an open problem. In this paper we solve this problem for some subclasses of odd‐hole‐free graphs: those that are diamond‐free and those that are bull‐free. We also prove the NP‐completeness of 2‐clique‐coloring K4‐free perfect graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 233–249, 2006  相似文献   

6.
Sumner [7] proved that every connected K 1,3-free graph of even order has a perfect matching. He also considered graphs of higher connectivity and proved that if m ≥ 2, every m-connected K 1,m+1-free graph of even order has a perfect matching. In [6], two of the present authors obtained a converse of sorts to Sumner’s result by asking what single graph one can forbid to force the existence of a perfect matching in an m-connected graph of even order and proved that a star is the only possibility. In [2], Fujita et al. extended this work by considering pairs of forbidden subgraphs which force the existence of a perfect matching in a connected graph of even order. But they did not settle the same problem for graphs of higher connectivity. In this paper, we give an answer to this problem. Together with the result in [2], a complete characterization of the pairs is given.  相似文献   

7.
A graph is total domination edge-critical if the addition of any edge decreases the total domination number, while a graph with minimum degree at least two is total domination vertex-critical if the removal of any vertex decreases the total domination number. A 3 t EC graph is a total domination edge-critical graph with total domination number 3 and a 3 t VC graph is a total domination vertex-critical graph with total domination number 3. A graph G is factor-critical if Gv has a perfect matching for every vertex v in G. In this paper, we show that every 3 t EC graph of even order has a perfect matching, while every 3 t EC graph of odd order with no cut-vertex is factor-critical. We also show that every 3 t VC graph of even order that is K 1,7-free has a perfect matching, while every 3 t VC graph of odd order that is K 1,6-free is factor-critical. We show that these results are tight in the sense that there exist 3 t VC graphs of even order with no perfect matching that are K 1,8-free and 3 t VC graphs of odd order that are K 1,7-free but not factor-critical.  相似文献   

8.
We construct seven new examples of perfect one-factorizations, in the complete graphs K126, K170, K730, K1370, K1850, K2198, and K3126. These are generated by two- and four-quotient starters in finite fields. We also find several examples of perfect one-factorizations that are not isomorphic to previously known examples.  相似文献   

9.
A graph is defined to be randomly matchable if every matching of G can be extended to a perfect matching. It is shown that the connected randomly matchable graphs are precisely K2n and Kn,n (n ≥ 1).  相似文献   

10.
We consider the class of graphs where every induced subgraph possesses a vertex whose neighborhood has no P4 and no 2K2. We prove that Berge's Strong Perfect Graph Conjecture holds for such graphs. The class generalizes several well-known families of perfect graphs, such as triangulated graphs and bipartite graphs. Testing membership in this class and computing the maximum clique size for a graph in this class is not hard, but finding an optimal coloring is NP-hard. We give a polynomial-time algorithm for optimally coloring the vertices of such a graph when it is perfect. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The partitional graphs, which are a subclass of the sequential graphs, were recently introduced by Ichishima and Oshima (Math Comput Sci 3:39–45, 2010), and the cartesian product of a partitional graph and K 2 was shown to be partitional, sequential, harmonious and felicitous. In this paper, we present some necessary conditions for a graph to be partitional. By means of these, we study the partitional properties of certain classes of graphs. In particular, we completely characterize the classes of the graphs B m and K m,2 × Q n that are partitional. We also establish the relationships between partitional graphs and graphs with strong α-valuations as well as strongly felicitous graphs.  相似文献   

12.
The Pfaffian method enumerating perfect matchings of plane graphs was discovered by Kasteleyn. We use this method to enumerate perfect matchings in a type of graphs with reflective symmetry which is different from the symmetric graphs considered in [J. Combin. Theory Ser. A 77 (1997) 67, MATCH—Commun. Math. Comput. Chem. 48 (2003) 117]. Here are some of our results: (1) If G is a reflective symmetric plane graph without vertices on the symmetry axis, then the number of perfect matchings of G can be expressed by a determinant of order |G|/2, where |G| denotes the number of vertices of G. (2) If G contains no subgraph which is, after the contraction of at most one cycle of odd length, an even subdivision of K2,3, then the number of perfect matchings of G×K2 can be expressed by a determinant of order |G|. (3) Let G be a bipartite graph without cycles of length 4s, s{1,2,…}. Then the number of perfect matchings of G×K2 equals ∏(1+θ2)mθ, where the product ranges over all non-negative eigenvalues θ of G and mθ is the multiplicity of eigenvalue θ. Particularly, if T is a tree then the number of perfect matchings of T×K2 equals ∏(1+θ2)mθ, where the product ranges over all non-negative eigenvalues θ of T and mθ is the multiplicity of eigenvalue θ.  相似文献   

13.
In this paper we prove that all interchange graphs exceptK 1, K2 C(3) andC(4) are 3-connected.Tongji University  相似文献   

14.
Let S be a finite set of graphs and t a real number, 0 < t < 1. A (deterministic) graph G is (t, 5)-proportional if for every HS, the number of induced subgraphs of G isomorphic to H equals the expected number of induced copies of H in the random graph Gn, t where n = |V(G)|. Let Sk = {all graphs on k vertices}, in particular S3 = {K3, P2, K2Kt, D3}. The notion of proportional graphs stems from the study of random graphs (Barbour, Karoński, and Ruciński, J Combinat. Th. Ser. B, 47 , 125-145, 1989; Janson and Nowicki, Prob. Th. Rel. Fields, to appear, Janson, Random Struct. Alg., 1 , 15-37, 1990) where it is shown that (t, S3)-proportional graphs play a very special role; we thus call them simply t-proportional. However, only a few ½-proportional graphs on 8 vertices were known and it was an open problem whether there are any f-proportional graphs with t ≠ ½ at all. In this paper, we show that there are infinitely many ½-proportional graphs and that there are t-proportional graphs with t≠. Both results are proved constructively. [We are not able to provide the latter construction for all f∈ Q∩(0,1), but the set of ts for which our construction works is dense in (0,1).] To support a conviction that the existence of (t, S3)-proportional graphs was not quite obvious, we show that there are no (t, S4)-proportional graphs.  相似文献   

15.
The clique graph K(G) of a given graph G is the intersection graph of the collection of maximal cliques of G. Given a family ℱ of graphs, the clique‐inverse graphs of ℱ are the graphs whose clique graphs belong to ℱ. In this work, we describe characterizations for clique‐inverse graphs of K3‐free and K4‐free graphs. The characterizations are formulated in terms of forbidden induced subgraphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 257–272, 2000  相似文献   

16.
The authors previously published an iterative process to generate a class of projective‐planar K3, 4‐free graphs called “patch graphs.” They also showed that any simple, almost 4‐connected, nonplanar, and projective‐planar graph that is K3, 4‐free is a subgraph of a patch graph. In this article, we describe a simpler and more natural class of cubic K3, 4‐free projective‐planar graphs that we call Möbius hyperladders. Furthermore, every simple, almost 4‐connected, nonplanar, and projective‐planar graph that is K3, 4‐free is a minor of a Möbius hyperladder. As applications of these structures we determine the page number of patch graphs and of Möbius hyperladders.  相似文献   

17.
We show a connection between two concepts that have hitherto been investigated separately, namely convex‐round graphs and circular cliques. The connections are twofold. We prove that the circular cliques are precisely the cores of convex‐round graphs; this implies that convex‐round graphs are circular‐perfect, a concept introduced recently by Zhu [10]. Secondly, we characterize maximal Kr‐free convex‐round graphs and show that they can be obtained from certain circular cliques in a simple fashion. Our proofs rely on several structural properties of convex‐round graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 182–194, 2002  相似文献   

18.
A graph is called weakly triangulated if it contains no chordless cycle on five or more vertices (also called hole) and no complement of such a cycle (also called antihole). Equivalently, we can define weakly triangulated graphs as antihole-free graphs whose induced cycles are isomorphic either to C3 or to C4. The perfection of weakly triangulated graphs was proved by Hayward [Hayward, J Combin Theory B. 39 (1985), 200–208] and generated intense studies to efficiently solve, for these graphs, the classical NP-complete problems that become polynomial on perfect graphs. If we replace, in the definition above, the C4 by an arbitrary Cp (p even, at least equal to 6), we obtain new classes of graphs whose perfection is shown in this article. In fact, we prove a more general result: for any even integer p ≥ 6, the graphs whose cycles are isomorphic either to C3 or to one of Cp, Cp+2, …, C2p 6 are perfect. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 73–79, 1999  相似文献   

19.
A graph G is said to be decomposable if G can be decomposed into a cartesian product of two nontrivial graphs. G is bidecomposable if not only G but also its complement G is decomposable. We prove that there are only six bidecomposable graphs; 2K(2), C4, Q 3, K(2) ×(K(2) + K(2)) , K(3) × K(3).  相似文献   

20.
It is well known that every planar graph G is 2‐colorable in such a way that no 3‐cycle of G is monochromatic. In this paper, we prove that G has a 2‐coloring such that no cycle of length 3 or 4 is monochromatic. The complete graph K5 does not admit such a coloring. On the other hand, we extend the result to K5‐minor‐free graphs. There are planar graphs with the property that each of their 2‐colorings has a monochromatic cycle of length 3, 4, or 5. In this sense, our result is best possible. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 25–38, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号