首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimization methods that use gradients require initial estimates of the Hessian or second derivative matrix; the more accurate the estimate, the more rapid the convergence. For geometry optimization, an approximate Hessian or force constant matrix is constructed from a simple valence force field that takes into account the inherent connectivity and flexibility of the molecule. Empirical rules are used to estimate the diagonal force constants for a set of redundant internal coordinates consisting of all stretches, bends, torsions and out-of-plane deformations involving bonded atoms. The force constants are transformed from the redundant internal coordinates to Cartesian coordinates, and then from Cartesian coordinates to the non-redundant internal coordinates used in the specification of the geometry and optimization. This method is especially suitable for cyclic molecules. Problems associated with the choice of internal coordinates for geometry optimization are also discussed.Fellow of the Alfred P. Sloan Foundation, 1981–83  相似文献   

2.
An algorithm is proposed for the structural optimization of periodic systems in internal (chemical) coordinates. Internal coordinates may include in addition to the usual bond lengths, bond angles, out-of-plane and dihedral angles, various "lattice internal coordinates" such as cell edge lengths, cell angles, cell volume, etc. The coordinate transformations between Cartesian (or fractional) and internal coordinates are performed by a generalized Wilson B-matrix, which in contrast to the previous formulation by Kudin et al. [J. Chem. Phys. 114, 2919 (2001)] includes the explicit dependence of the lattice parameters on the positions of all unit cell atoms. The performance of the method, including constrained optimizations, is demonstrated on several examples, such as layered and microporous materials (gibbsite and chabazite) as well as the urea molecular crystal. The calculations used energies and forces from the ab initio density functional theory plane wave method in the projector-augmented wave formalism.  相似文献   

3.
A resonance Raman intensity analysis of the metal-to-ligand charge-transfer (MLCT) transition for the rhenium compound Re(2-(2'-pyridyl)quinoxaline)(CO)(3)Cl (RePQX) is presented. Photoinduced geometry changes are calculated, and the results are presented using the vibrational normal modes and the redundant internal coordinates. A density functional theory calculation is used to determine the ground-state nonresonant Raman spectrum and a transformation matrix that transforms the redundant internal coordinates into the normal modes. The normal modes nu(37) (rhenium coordination sphere distortion) and nu(75) (ligand skeletal stretch) show the largest photoinduced geometry change (Delta = 1.0 and 0.7, respectively). A single carbonyl mode is enhanced in the resonance Raman spectra. Time-dependent density functional theory is used to calculate excited-state geometry changes, which are subsequently used to determine the signs of the photoinduced normal mode displacements. Transforming to internal coordinates reveals that all the CO bond lengths are displaced in the excited state. The Re-C and C-C ligand bond lengths are also displaced in the excited state. The results are discussed in terms of a simple one-electron picture for the electronic transition. Many bond angles and torsional coordinates are also displaced by the metal-to-ligand charge transfer, and most of these are associated with the rhenium coordination sphere. It is demonstrated that using internal coordinates presents a clear picture of the geometry changes associated with photoinduced electron transfer in metal polypyridyl systems.  相似文献   

4.
The model of Regularized Quantum Mechanical Force Field (RQMFF) was applied to the joint treatment of ab initio and experimental vibrational data of the four primary nucleobases using a new algorithm based on the scaling procedure in Cartesian coordinates. The matrix of scaling factors in Cartesian coordinates for the considered molecules includes diagonal elements for all atoms of the molecule and off-diagonal elements for bonded atoms and for some non-bonded atoms (1–3 and some 1–4 interactions). The choice of the model is based on the results of the second-order perturbation analysis of the Fock matrix for uncoupled interactions using the Natural Bond Orbital (NBO) analysis. The scaling factors obtained within this model as a result of solving the inverse problem (regularized Cartesian scale factors) of adenine, cytosine, guanine, and thymine molecules were used to correct the Hessians of the canonical base pairs: adenine–thymine and cytosine–guanine. The proposed procedure is based on the block structure of the scaling matrix for molecular entities with non-covalent interactions, as in the case of DNA base pairs. It allows avoiding introducing internal coordinates (or coordinates of symmetry, local symmetry, etc.) when scaling the force field of a compound of a complex structure with non-covalent H-bonds.  相似文献   

5.
Using the recently introduced delocalized internal coordinates, in conjunction with the classical method of Lagrange multipliers, an algorithm for constrained optimization is presented in which the desired constraints do not have to be satisfied in the starting geometry. The method used is related to a previous algorithm by the same author for constrained optimization in Cartesian coordinates [J. Comput. Chem., 13 , 240 (1992)], but is simpler and far more efficient. Any internal (distance or angle/torsion) constraint can be imposed between any atoms in the system whether or not the atoms involved are formally bonded. Imposed constraints can be satisfied exactly. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 :1079–1095, 1997  相似文献   

6.
Given the invariance of an N-body system under discrete operations of reflection, inversion, a rotation by 2π/n, and the corresponding relations among the derivatives of energy, we have constructed through an invertible transformation a set of active and redundant coordinates. Movement along the active coordinates preserves all symmetry relations. We show that algorithms for locating stationary points or for calculating reaction paths are exactly separable in these active and redundant coordinates. We further show that this formalism is equally applicable when equations of constraints among coordinates are specified for the movement of particles. This includes geometrical constraints on bond lengths, angles, substituent group internal rotations, etc. This formalism enhances the efficiency since (laborious) cartesian derivatives need to be calculated only for the active variables and that the problem is reduced in term of m(?3N) variables. We apply this procedure to obtain the equilibrium geometry of H2O molecule within the subspace of C2v symmetry configurations ab initio derivatives.  相似文献   

7.
The geometry optimization using natural internal coordinates was applied for transition metal complexes. The original definitions were extended here for the skeletal degrees of freedom which are related to the translational and rotational displacements of the ηn-bonded ligands. We suggest definitions for skeletal coordinates of ηn-bonded small unsaturated rings and chains. The performance of geometry optimizations using the suggested coordinates were tested on various conformers of 14 complexes. Consideration was given to alternative representations of the skeletal internal coordinates, and the performance of optimization is compared. Using the skeletal internal coordinates presented here, most transition metal complexes were optimized between 10 and 20 geometry optimization cycles in spite of the usually poor starting geometry and crude approximation for the Hessian. We also optimized the geometry of some complexes in Cartesian coordinates using the Hessian from a parametrized redundant force field. We found that it took between two and three times as many iterations to reach convergence in Cartesian coordinates than using natural internal coordinates. © 1997 by John Wiley & Sons, Inc.  相似文献   

8.
It is demonstrated that unique and simple analytical functions are justified for the atomic charge dependences q of the T (T = Al, P) and O atoms of aluminophosphates (AlPOs) using DFT calculations with several basis sets, starting from STO-3G to 3-21G and 6-21G**. Three internal (bonds, angles, ...) coordinates for the charge dependences of the T atoms and four coordinates for the O are sufficient to reach a precision of 1.8% for the fitted q(Al), 1.0% for q(P), and 2.5% for q(O) relatively to the values calculated at any basis set level. The proposed strategy consists in an iterative scheme starting from charge dependences based on the neighbor's positions only. Electrostatic potential values are computed to illustrate the differences between the calculated and fitted charges in the considered AlPO models.  相似文献   

9.
A practical procedure (FUERZA) to obtain internal force constants from Cartesian second derivatives (Hessians) is presented and discussed. It allows a systematic analysis of pair atomic interactions in a molecular system, and it is fully invariant to the choice of internal coordinates of the molecule. Force constants for bonds or for any pair of atoms in general are defined by means of the eigenanalysis of their pair interaction matrix. Force constants for the angles are obtained from their corresponding two-pair interaction matrices of the two bonds or distances forming the angle, and the dihedral force constants are similarly obtained using their corresponding three-pair interaction matrices. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
室温下,[Cp_2Ti(C≡CPh)_2]和[Cp_2Zr(C≡CPh)_2]分别与二茂钒作用,首次 合成了[Cp_2V(μ-η~2:η~4-PhC_4Ph)MCp_2] 1 (M = Ti), 2 (M = Zr)。用元素 分析、质谱、磁矩、红外和拉曼光谱对配合物进行了表征,两个配合物具有相似的 磁化率,配合物2的晶体结构分析表明PhC_4Ph通过内部两个碳原子键合到Cp_2V上 ,内部两个碳原子和外部两个碳原子均与Cp_2Zr键合,丁二烯骨架内部的两个碳原 子都具有四配位的平面结构。用核磁跟踪技术初步探讨了合成反应机理。  相似文献   

11.
The implementation of technique for full structural optimizations of complex periodic systems in the DFT-PAW package VASP, including the volume and shape of the unit cell and the internal coordinates of the atoms, together with a correction that allows an appropriate modeling of London dispersion forces, as given by the DFT-D2 approach of Grimme [Grimme, S. J. Comp. Chem. 2006, 27, 1787], is reported. Dispersion corrections are calculated not only for the forces acting on the atoms, but also for the stresses on the unit cell. This permits a simultaneous optimization of all degrees of freedom. Benchmark results on a series of prototype systems are presented and compared to results obtained by other methods and experimental data. It is demonstrated that the computationally inexpensive DFT-D2 scheme yields reasonable predictions for the structure, bulk moduli, and cohesive energies of weakly bonded materials.  相似文献   

12.
Thermally driven materials characterized by complex energy landscapes, such as proteins, exhibit motions on a broad range of space and time scales. Principal component analysis (PCA) is often used to extract modes of motion from protein trajectory data that correspond to coherent, functional motions. In this work, two other methods, maximum covariance analysis (MCA) and canonical correlation analysis (CCA) are formulated in a way appropriate to analyze protein trajectory data. Both methods partition the coordinates used to describe the system into two sets (two measurement domains) and inquire as to the correlations that may exist between them. MCA and CCA provide rotations of the original coordinate system that successively maximize the covariance (MCA) or correlation (CCA) between modes of each measurement domain under suitable constraint conditions. We provide a common framework based on the singular value decomposition of appropriate matrices to derive MCA and CCA. The differences between and strengths and weaknesses of MCA and CCA are discussed and illustrated. The application presented here examines the correlation between the backbone and side chain of the peptide met-enkephalin as it fluctuates between open conformations, found in solution, to closed conformations appropriate to when it is bound to its receptor. Difficulties with PCA carried out in Cartesian coordinates are found and motivate a formulation in terms of dihedral angles for the backbone atoms and selected atom distances for the side chains. These internal coordinates are a more reliable basis for all the methods explored here. MCA uncovers a correlation between combinations of several backbone dihedral angles and selected side chain atom distances of met-enkephalin. It could be used to suggest residues and dihedral angles to focus on to favor specific side chain conformers. These methods could be applied to proteins with domains that, when they rearrange upon ligand binding, may have correlated functional motions or, for multi-subunit proteins, may exhibit correlated subunit motions.  相似文献   

13.
14.
A molecular mechanics force field implemented in the Sybyl program is described along with a statistical evaluation of its efficiency on a variety of compounds by analysis of internal coordinates and thermodynamic barriers. The goal of the force field is to provide good quality geometries and relative energies for a large variety of organic molecules by energy minimization. Performance in protein modeling was tested by minimizations starting from crystallographic coordinates for three cyclic hexapeptides in the crystal lattice with rms movements of 0.019 angstroms, 2.06 degrees, and 6.82 degrees for bond lengths, angles, and torsions, respectively, and an rms movement of 0.16 angstroms for heavy atoms. Isolated crambin was also analyzed with rms movements of 0.025 angstroms, 2.97 degrees, and 13.0 degrees for bond lengths, angles, and torsions respectively, and an rms movement of 0.42 angstroms for heavy atoms. Accuracy in calculating thermodynamic barriers was tested for 17 energy differences between conformers, 12 stereoisomers, and 15 torsional barriers. The rms errors were 0.8, 1.7, and 1.13 kcal/mol, respectively, for the three tests. Performance in general purpose applications was assessed by minimizing 76 diverse complex organic crystal structures, with and without randomization by coordinate truncation, with rms movements of 0.025 angstroms, 2.50 degrees, and 9.54 degrees for bond lengths, angles and torsions respectively, and an average rms movement of 0.192 angstroms for heavy atoms.  相似文献   

15.
A computational algorithm for the variable metric method of molecular geometry optimization using internal instead of cartesian coordinates is presented. The greater efficiency attainable using internal coordinates is shown using ethylene and methanol as examples. A high degree of accuracy in determining bond lengths and angles was achieved even when, as in the case of some ethers studied, the resulting equilibrium structures were essentially different from the initial ones constructed from experimental data.  相似文献   

16.
The conventional set of Td symmetry coordinates for the bending modes of MX4 molecules can lead to ambiguous geometries when displacements from equilibrium are large. It is proposed here to use internal coordinates that are haversines of the bending angles divided by their sum. The A1 representation becomes a constant, enabling recovery of the bending angles unambiguously, analytically, and without approximation. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Conventional molecular dynamics simulations of macromolecules require long computational times because the most interesting motions are very slow compared to the fast oscillations of bond lengths and bond angles that limit the integration time step. Simulation of dynamics in the space of internal coordinates, that is, with bond lengths, bond angles, and torsions as independent variables, gives a theoretical possibility of eliminating all uninteresting fast degrees of freedom from the system. This article presents a new method for internal coordinate molecular dynamics simulations of macromolecules. Equations of motion are derived that are applicable to branched chain molecules with any number of internal degrees of freedom. Equations use the canonical variables and they are much simpler than existing analogs. In the numerical tests the internal coordinate dynamics are compared with the traditional Cartesian coordinate molecular dynamics in simulations of a 56 residue globular protein. For the first time it was possible to compare the two alternative methods on identical molecular models in conventional quality tests. It is shown that the traditional and internal coordinate dynamics require the same time step size for the same accuracy and that in the standard geometry approximation of amino acids, that is, with fixed bond lengths, bond angles, and rigid aromatic groups, the characteristic step size is 4 fs, which is 2 times higher than with fixed bond lengths only. The step size can be increased up to 11 fs when rotation of hydrogen atoms is suppressed. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18 : 1354–1364, 1997  相似文献   

18.
We examine the Hessian matrix of the potential energy under internal coordinates. We report all Christoffel symbols which exist for molecules if we use the known coordinates such as bond distances, bond angles, torsion angles, and out-of-plane angles. We use as an example triatomic HCN in an extended geometry.  相似文献   

19.
An analytic expression for protein atomic displacements in Cartesian coordinate space (CCS) against small changes in dihedral angles is derived. To study time-dependent dynamics of a native protein molecule in CCS from dynamics in the internal coordinate space (ICS), it is necessary to convert small changes of internal coordinate variables to Cartesian coordinate variables. When we are interested in molecular motion, six degrees of freedom for translational and rotational motion of the molecule must be eliminated in this conversion, and this conversion is achieved by requiring the Eckart condition to hold. In this article, only dihedral angles are treated as independent internal variables (i.e., bond angles and bond lengths are fixed), and Cartesian coordinates of atoms are given analytically by a second-order Taylor expansion in terms of small deviations of variable dihedral angles. Coefficients of the first-order terms are collected in the K matrix obtained previously by Noguti and Go (1983) (see ref. 2). Coefficients of the second-order terms, which are for the first time derived here, are associated with the (newly termed) L matrix. The effect of including the resulting quadratic terms is compared against the precise numerical treatment using the Eckart condition. A normal mode analysis (NMA) in the dihedral angle space (DAS) of the protein bovine pancreatic trypsin inhibitor (BPTI) has been performed to calculate shift of mean atomic positions and mean square fluctuations around the mean positions. The analysis shows that the second-order terms involving the L matrix have significant contributions to atomic fluctuations at room temperature. This indicates that NMA in CCS involves significant errors when applied for such large molecules as proteins. These errors can be avoided by carrying out NMA in DAS and by considering terms up to second order in the conversion of atomic motion from DAS to CCS. © 1995 by John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号