首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An in-tournament is an oriented graph such that the negative neighborhood of every vertex induces a tournament. A digraph D is cycle complementary if there exist two vertex-disjoint directed cycles spanning the vertex set of D. Let D be a 2-connected in-tournament of order at least 8. In this paper we show that D is not cycle complementary if and only if it is 2-regular and has odd order.  相似文献   

2.
A digraph D is said to be k-cyclic if every k vertices of D lie in some directed cycle of D . We show that almost every 2-regular digraph is 2-cyclic.  相似文献   

3.
4.
We call the digraph D an k-colored digraph if the arcs of D are colored with k colors. A subdigraph H of D is called monochromatic if all of its arcs are colored alike. A set NV(D) is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices u,vN, there is no monochromatic directed path between them, and (ii) for every vertex x∈(V(D)?N), there is a vertex yN such that there is an xy-monochromatic directed path. In this paper, we prove that if D is an k-colored digraph that can be partitioned into two vertex-disjoint transitive tournaments such that every directed cycle of length 3,4 or 5 is monochromatic, then D has a kernel by monochromatic paths. This result gives a positive answer (for this family of digraphs) of the following question, which has motivated many results in monochromatic kernel theory: Is there a natural numberlsuch that if a digraphDisk-colored so that every directed cycle of length at mostlis monochromatic, thenDhas a kernel by monochromatic paths?  相似文献   

5.
A digraph is locally-in semicomplete if for every vertex of D its in-neighborhood induces a semicomplete digraph and it is locally semicomplete if for every vertex of D the in-neighborhood and the out-neighborhood induces a semicomplete digraph. The locally semicomplete digraphs where characterized in 1997 by Bang-Jensen et al. and in 1998 Bang-Jensen and Gutin posed the problem if finding a kernel in a locally-in semicomplete digraph is polynomial or not. A kernel of a digraph is a set of vertices, which is independent and absorbent. A digraph D such that every proper induced subdigraph of D has a kernel is said to be critical kernel imperfect digraph (CKI-digraph) if the digraph D does not have a kernel. A digraph without an induced CKI-digraph as a subdigraph does have a kernel. We characterize the locally semicomplete digraphs, which are CKI. As a consequence of this characterization we conclude that determinate whether a locally semicomplete digraph is a CKI-digraph or not, is polynomial.  相似文献   

6.
The directed distance dD(u, v) from a vertex u to a vertex v in a strong digraph D is the length of a shortest (directed) u - v path in D. The eccentricity of a vertex v in D is the directed distance from v to a vertex furthest from v. The distance of a vertex v in D is the sum of the directed distances from v to the vertices of D. The center C(D) of D is the subdigraph induced by those vertices of minimum eccentricity, while the median M(D) of D is the subdigraph induced by those vertices of minimum distance. It is shown that for every two asymmetric digraphs D1 and D2, there exists a strong asymmetric digraph H such that C(H) ? D1 and M(H) ? D2, and where the directed distance from C(H) to M(H) and from M(H) to C(H) can be arbitrarily prescribed. Furthermore, if K is a nonempty asymmetric digraph isomorphic to an induced subdigraph of both D1 and D2, then there exists a strong asymmetric digraph F such that C(F) ? D1, M(F) ? D2 and C(F) ∩ M(F) ? K. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
In this paper we introduce a new class of directed graphs called locally semicomplete digraphs. These are defined to be those digraphs for which the following holds: for every vertex x the vertices dominated by x induce a semicomplete digraph and the vertices that dominate x induce a semicomplete digraph. (A digraph is semicomplete if for any two distinct vertices u and ν, there is at least one arc between them.) This class contains the class of semicomplete digraphs, but is much more general. In fact, the class of underlying graphs of the locally semi-complete digraphs is precisely the class of proper circular-arc graphs (see [13], Theorem 3). We show that many of the classic theorems for tournaments have natural analogues for locally semicomplete digraphs. For example, every locally semicomplete digraph has a directed Hamiltonian path and every strong locally semicomplete digraph has a Hamiltonian cycle. We also consider connectivity properties, domination orientability, and algorithmic aspects of locally semicomplete digraphs. Some of the results on connectivity are new, even when restricted to semicomplete digraphs.  相似文献   

8.
On Hamiltonian Powers of Digraphs   总被引:2,自引:0,他引:2  
 For a strongly connected digraph D, the k-th power D k of D is the digraph with the same set of vertices, a vertex x being joined to a vertex y in D k if the directed distance from x to y in D is less than or equal to k. It follows from a result of Ghouila-Houri that for every digraph D on n vertices and for every kn/2, D k is hamiltonian. In the paper we characterize these digraphs D of odd order whose (⌈n/2 ⌉−1)-th power is hamiltonian. Revised: June 13, 1997  相似文献   

9.
Galeana-Sanchez and Neumann-Lara proved that a sufficient condition for a digraph to have a kernel (i.e., an absorbent independent set) is the following: (P) every odd directed cycle possesses at least two directed chords whose terminal endpoints are consecutive on the cycle. Here it is proved that (P) is satisfied by those digraphs having these two properties: (i) the reversal of every 3-circuit is present, and (ii) every odd directed cycle v1v2n+1 V1 has two chords of the form (vi, vi+2). This is stronger than a result of Galeana-Sanchez.  相似文献   

10.
We prove that if a directed graph,D, contains no odd directed cycle and, for all but finitely many vertices, EITHER the in-degrees are finite OR the out-degrees are at most one, thenD contains an independent covering set (i.e. there is a kernel). We also give an example of a countable directed graph which has no directed cycle, each vertex has out-degree at most two, and which has no independent covering set.Research supported by N.S.E.R.C. grants #69-0982 and #69-0259.  相似文献   

11.
An antidirected path [3] in a digraph is a path with consecutive edges directed either both towards or both away from their common vertex. An aneulerian digraph is a digraph that contains a closed antidirected path passing through each edge once. It is shown that in a 4-valent Eulerian digraph D every two distinct aneulerian subdigraphs are edge disjoint and the set of them cover the edges. A correspondence is given between the aneulerian subdigraphs of D and the 1-difactors. The main theorem states that an Eulerian digraph which has no bivalent vertices has an odd number of directed Eulerian paths iff it is a 4-valent aneulerian digraph.  相似文献   

12.
A directed cycle C of a digraph D is extendable if there exists a directed cycle C′ in D that contains all vertices of C and an additional one. In 1989, Hendry defined a digraph D to be cycle extendable if it contains a directed cycle and every non‐Hamiltonian directed cycle of D is extendable. Furthermore, D is fully cycle extendable if it is cycle extendable and every vertex of D belongs to a directed cycle of length three. In 2001, Tewes and Volkmann extended these definitions in considering only directed cycles whose length exceed a certain bound 3≤k<n: a digraph D is k ‐extendable if every directed cycle of length t, where kt<n, is extendable. Moreover, D is called fully k ‐extendable if D is k ‐extendable and every vertex of D belongs to a directed cycle of length k. An in‐tournament is an oriented graph such that the in‐neighborhood of every vertex induces a tournament. This class of digraphs which generalizes the class of tournaments was introduced by Bang‐Jensen, Huang and Prisner in 1993. Tewes and Volkmann showed that every connected in‐tournament D of order n with minimum degree δ≥1 is ( ) ‐extendable. Furthermore, if D is a strongly connected in‐tournament of order n with minimum degree δ=2 or , then D is fully ( ) ‐extendable. In this article we shall see that if , every vertex of D belongs to a directed cycle of length , which means that D is fully ( ) ‐extendable. This confirms a conjecture of Tewes and Volkmann. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 82–92, 2010  相似文献   

13.
A kernel N of a digraph D is an independent set of vertices of D such that for every wV(D)−N there exists an arc from w to N. If every induced subdigraph of D has a kernel, D is said to be a kernel perfect digraph. D is called a critical kernel imperfect digraph when D has no kernel but every proper induced subdigraph of D has a kernel. If F is a set of arcs of D, a semikernel modulo F of D is an independent set of vertices S of D such that for every zV(D)−S for which there exists an (S,z)-arc of DF, there also exists an (z,S)-arc in D. In this work we show sufficient conditions for an infinite digraph to be a kernel perfect digraph, in terms of semikernel modulo F. As a consequence it is proved that symmetric infinite digraphs and bipartite infinite digraphs are kernel perfect digraphs. Also we give sufficient conditions for the following classes of infinite digraphs to be kernel perfect digraphs: transitive digraphs, quasi-transitive digraphs, right (or left)-pretransitive digraphs, the union of two right (or left)-pretransitive digraphs, the union of a right-pretransitive digraph with a left-pretransitive digraph, the union of two transitive digraphs, locally semicomplete digraphs and outward locally finite digraphs.  相似文献   

14.
A digraph D is called super-arc-strongly connected if the arcs of every its minimum arc-disconnected set are incident to or from some vertex in D. A digraph without any directed cycle of length 2 is called an oriented graph. Sufficient conditions for digraphs to be super-arc-strongly connected have been given by several authors. However, closely related conditions for super-arc-strongly connected oriented graphs have little attention until now. In this paper we present some minimum degree and degree sequence conditions for oriented graphs to be super-arc-strongly connected.  相似文献   

15.
The vertex set of a digraph D is denoted by V(D). A c-partite tournament is an orientation of a complete c-partite graph. In 1991, Jian-zhong Wang conjectured that every arc of a regular 3-partite tournament D is contained in directed cycles of all lengths 3,6,9,…,|V(D)|. This conjecture is not valid, because for each integer t with 3?t?|V(D)|, there exists an infinite family of regular 3-partite tournaments D such that at least one arc of D is not contained in a directed cycle of length t.In this paper, we prove that every arc of a regular 3-partite tournament with at least nine vertices is contained in a directed cycle of length m, m+1, or m+2 for 3?m?5, and we conjecture that every arc of a regular 3-partite tournament is contained in a directed cycle of length m, (m+1), or (m+2) for each m∈{3,4,…,|V(D)|-2}.It is known that every regular 3-partite tournament D with at least six vertices contains directed cycles of lengths 3, |V(D)|-3, and |V(D)|. We show that every regular 3-partite tournament D with at least six vertices also has a directed cycle of length 6, and we conjecture that each such 3-partite tournament contains cycles of all lengths 3,6,9,…,|V(D)|.  相似文献   

16.
We call the digraph D an orientation of a graph G if D is obtained from G by the orientation of each edge of G in exactly one of the two possible directions. The digraph D is an m-coloured digraph if the arcs of D are coloured with m-colours.Let D be an m-coloured digraph. A directed path (or a directed cycle) is called monochromatic if all of its arcs are coloured alike.A set NV(D) is said to be a kernel by monochromatic paths if it satisfies the two following conditions: (i) for every pair of different vertices u,vN there is no monochromatic directed path between them and (ii) for every vertex xV(D)-N there is a vertex yN such that there is an xy-monochromatic directed path.In this paper we obtain sufficient conditions for an m-coloured orientation of a graph obtained from Kn by deletion of the arcs of K1,r(0?r?n-1) to have a kernel by monochromatic.  相似文献   

17.
A digraph without loops, multiple arcs and directed cycles of length two is called a local tournament if the set of in-neighbors as well as the set of out-neighbors of every vertex induces a tournament. A vertex of a strongly connected digraph is called a non-separating vertex if its removal preserves the strong connectivity of the digraph in question.In 1990, Bang-Jensen showed that a strongly connected local tournament does not have any non-separating vertices if and only if it is a directed cycle. Guo and Volkmann extended this result in 1994. They determined the strongly connected local tournament with exactly one non-separating vertex. In the first part of this paper we characterize the class of strongly connected local tournaments with exactly two non-separating vertices.In the second part of the paper we consider the following problem: Given a strongly connected local tournament D of order n with at least n+2 arcs and an integer 3≤rn. How many directed cycles of length r exist in D? For tournaments this problem was treated by Moon in 1966 and Las Vergnas in 1975. A reformulation of the results of the first part shows that we have characterized the class of strongly connected local tournaments with exactly two directed cycles of length n−1. Among other things we show that D has at least nr+1 directed cycles of length r for 4≤rn−1 unless it has a special structure. Moreover, we characterize the class of local tournaments with exactly nr+1 directed cycles of length r for 4≤rn−1 which generalizes a result of Las Vergnas.  相似文献   

18.
A digraph is quasi-transitive if there is a complete adjacency between the inset and the outset of each vertex. Quasi-transitive digraphs are interseting because of their relation to comparability graphs. Specifically, a graph can be oriented as a quasi-transitive digraph if and only if it is a comparability graph. Quasi-transitive digraphs are also of interest as they share many nice properties of tournaments. Indeed, we show that every strongly connected quasi-transitive digraphs D on at least four vertices has two vertices v1 and v2 such that Dvi is strongly connected for i = 1, 2. A result of tournaments on the existence of a pair of arc-disjoint in- and out-branchings rooted at the same vertex can also be extended to quasi-transitive digraphs. However, some properties of tournaments, like hamiltonicity, cannot be extended directly to quasi-transitive digraphs. Therefore we characterize those quasi-transitive digraphs which have a hamiltonian cycle, respectively a hamiltonian path. We show the existence of highly connected quasi-transitive digraphs D with a factor (a collection of disjoint cycles covering the vertex set of D), which have a cycle of every length 3 ≦ k ≦ |V(D)| ? 1 through every vertex and yet they are not hamiltonian. Finally we characterize pancyclic and vertex pancyclic quasi-transitive digraphs. © 1995, John Wiley & Sons, Inc.  相似文献   

19.
The (directed) distance from a vertex u to a vertex v in a strong digraph D is the length of a shortest u-v (directed) path in D. The eccentricity of a vertex v of D is the distance from v to a vertex furthest from v in D. The radius radD is the minimum eccentricity among the vertices of D and the diameter diamD is the maximum eccentricity. A central vertex is a vertex with eccentricity radD and the subdigraph induced by the central vertices is the center C(D). For a central vertex v in a strong digraph D with radD < diamD, the central distance c(v) of v is the greatest nonnegative integer n such that whenever d(v, x) n, then x is in C(D). The maximum central distance among the central vertices of D is the ultraradius uradD and the subdigraph induced by the central vertices with central distance uradD is the ultracenter UC(D). For a given digraph D, the problem of determining a strong digraph H with UC(H) = D and C(H) D is studied. This problem is also considered for digraphs that are asymmetric.  相似文献   

20.
A digraph D is strong if it contains a directed path from x to y for every choice of vertices x,y in D. We consider the problem (MSSS) of finding the minimum number of arcs in a spanning strong subdigraph of a strong digraph. It is easy to see that every strong digraph D on n vertices contains a spanning strong subdigraph on at most 2n−2 arcs. By reformulating the MSSS problem into the equivalent problem of finding the largest positive integer kn−2 so that D contains a spanning strong subdigraph with at most 2n−2−k arcs, we obtain a problem which we prove is fixed parameter tractable. Namely, we prove that there exists an O(f(k)nc) algorithm for deciding whether a given strong digraph D on n vertices contains a spanning strong subdigraph with at most 2n−2−k arcs.We furthermore prove that if k≥1 and D has no cut vertex then it has a kernel of order at most (2k−1)2. We finally discuss related problems and conjectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号