首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The nine-dimensional potential energy surface for proton tunneling in the nonrigid C2H+ 3 cation was constructed from quantum-chemical data [MP4SDQ(T)/6-311++G(3df,3pd)] on the equilibrium geometry, energy, frequencies, and eigenvectors of the normal vibrations at the stationary points and transition states using the theory of isodynamic symmetry groups along the tunneling path.  相似文献   

2.
The most stable conformation of ion-molecule complexes involving a CO molecule were surveyed by the use of Hartree-Fock (HF) MO and third-order Moller-Plesset perturbation (MP3) methods with a 6–31G* basis set ion = H+, Li+, Na+, K+, Bc2+, Mg2+, and Ca2+. The MP3 level of theory reveals the ion-CO conformation in which the ion bonds to a carbon atom of CO to be the most stable; these MP3 results are contrary to the HF ones. Binding energies of ion-molecule complexes involving CO and N2 were computed; MP3 energies are in good agreement with the experimental ones. The computed binding energies of cation-N2 are about one-third of cation-NH3 due to the absence of dipole moment and the smaller polarizability of N2. The decrease in binding energy in cation-CO and -N2 complexes, with increasing cation size, is mainly caused by the decrease of the electrostatic and polarization stabilizations.  相似文献   

3.
Calculations of the C3H6 · LiH, C4H8 · M+, and C4H8 · MH systems and of C2H2 · MH complexes (M = Li or Na) were carried out by the unrestricted Hartree-Fock-Roothaan (UHF) method with partial optimization of the geometry using fixed geometric parameters of the C3H6 and C4H8 molecules. The standard 3-21G and 6-31G* basis sets were used. Unlike the C3H6 · LiH structure, the C4H8 · M+ and C4H8 · MH systems are typical complexes. It was found that the C4H8 · M+, C4H8 · MH, and C2H2 · MH complexes are similar in coordination of M+ ions and MH molecules by carbon atoms in spite of considerable differences in the interatomic distances (–1 A) between these atoms in the C4H8 and C2H2 molecules. The heats of formation (Q), which were calculated in the UHF/6-31G* approximation and using second- and fourth-order Möller-Plesset perturbation theory taking into account the electron correlation energy in the MP2/6-31G*. MP4(SDQ)/6-31G*, and MP4(SDTQ)/6-31G* approximations, satisfy the following relationships: Q(C2H3 · MH) < Q(C4H8 · MH) < Q(C4H8 · M+). It was observed that in going from Li to Na the corresponding values of Q tend to decrease.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 7, pp. 1636–1640, July, 1996.  相似文献   

4.
Conformational search of 12-thiacrown-4, 12t4, was performed using the CONFLEX method and the MMFF94S force field whereby 156 conformations were predicted. Optimized geometries of the 156 predicted conformations were calculated at the HF, B3LYP, CAM-B3LYP, M06, M06L, M062x and M06HF levels using the 6-311G** basis set. The correlation energy was recovered at the MP2 level using the same 6-311G** basis set. Optimized geometries at the MP2/6-311G** level and G3MP2 energies were calculated for some of the low energy conformations. The D 4 conformation was predicted to be the ground state conformation at all levels of theory considered in this work. Comparison between the dihedral angles of the predicted conformations indicated that for the stability of 12t4, a SCCS dihedral angle of 180° requirement is more important than a gauche CSCC dihedral angle requirement. Conformational search was performed also for the 12t4?CAg+, Bi3+, Cd2+, Cu+ and Sb3+ cation metal complexes using the CONFLEX method and the CAChe-augmented MM3 and MMFF94S force fields. Conformations with relative energies less than 10?kcal/mol at the MP2/6-31+G*//HF/6-31+G* level, with double zeta quality basis set on the metal cations, were considered for computations at the same levels as those used for free 12t4, using also the 6-311G** basis set. The cc-pVTZ-pp basis set was used for the metal cations. The predicted ground state conformations of the 12t4?CAg+, Bi3+, Cd2+, Cu+ and Sb3+ cation metal complexes are the C 4, C 4, C 4, C 2v and C 4 conformations, respectively. This is in agreement with the experimental X-ray data for the 12t4?CAg+ and Cd2+ cation metal complexes, but experimentally by X-ray, the 12t4?CBi3+ and Cu+ cation metal complexes have C s and C 4 structures, respectively.  相似文献   

5.
Third-order Møller–Plesset perturbation theory (MP 3) with a 6-31G** basis set was applied to study the relative stabilities of H+(X)2 conformations (X ? CO and N2) and their clustering energies. The effect of both basis set extensions and electron correlation is not negligible on the relative stabilities of the H+(CO)2 clusters. The most stable conformation of H+(CO)2 is found to be a Cv structure in which a carbon atom of CO bonds to the proton of H+(CO), whereas that of H+(N2)2 is a symmetry Dh structure. The second lowest energy conformations of H+(CO)2 and H+(N2)2 lie within 2 kcal/mol above the energies of the most stable structures. Clustering energies computed using MP 3 method with the 6-31G** basis set are in good agreement with the experimental findings of Hiraoka, Saluja, and Kebarle. The low-lying singlet conformations of H+(X)3 (X ? CO and N2) have been studied by the use of the Hartree–Fock MO method with the 6-31G** basis set and second-order Møller–Plesset perturbation theory with a 4-31G basis set. The most stable structure is a T-shaped structure in which a carbon atom of CO (or a nitrogen atom of N2) attacks the proton of the most stable conformation of H+(X)2 clusters.  相似文献   

6.
 Ab initio molecular orbital calculations for N9, N 9 and N+ 9 isomers were carried out at the HF/ 6-31G*, B3PW91/6-31G*, B3LYP/6-31G* and MP2/ 6-31G* levels of theory. Stable equilibrium geometric structures were determined by harmonic vibrational frequency analyses at the HF/6-31G*, B3PW91/6-31G* and B3LYP/6-31G* levels of theory. The most stable free-radical N9 cluster is structure 1 with C 2 v symmetry and that of anion N 9 is structure 3 with C s symmetry. Only one stable structure of the N+ 9 cation with C 2 v symmetry was predicted. Their potential application as high-energy-density materials has been examined. Received: 15 June 1999 / Accepted: 11 October 1999 / Published online: 14 March 2000  相似文献   

7.
An ab initio quantum chemical study (MP2/6-311++G**//B3LYP/6-31+G*) of a number of possible interactions is performed for the gas phase system of acetylene—potassium hydroxide-dimethylsulfoxide(DMSO)—methanol and with regard to the solvent effect within the continuum model. Key structures in the vinylation reaction are shown to be methoxide ion complexes with the alkali metal hydroxide and acetylene molecules. The formation of these complexes results in the activation of the acetylene molecule and an increase in the nucleophilicity of the methoxide ion. In the C2H2/CH3OH/KOH/DMSO reaction system, a proton exchange between the acetylene molecule and the anionic nucleophile ([OH]- and [CH3O]-) is freely performed with the formation of systems with ethynideions, whereas the thermodynamically preferable formation of vinyl alcohol or methyl vinyl ether is determined by a barrier of 20 kcal/mol.  相似文献   

8.
Ab initio calculations at 6–31G**, 6–31++G**, and MP2/6–31G** levels were performed on disilyl–fluoronium, (SiH3)2F+, with the SiH3 group eclipsed or staggered. Optimized geometries, total energies, dipole moments, atomic charges, electronic density, and vibrational frequencies were computed. The results were compared with calculated structural parameters and vibrational frequencies of H3SiF, H2SiF+, H2SiF?, and H4SiF+ ions. The basis-set effects were studied. Several thermochemistry parameters—ZPE, thermal energy, rotational constants, and entropies—were also calculated. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
The possible encapsulation of the interstellar abundant H3+ ion inside a C60 fullerene cage has been examined by using the Hartree‐Fock (HF) and the second order Møller‐Plesset perturbation (MP2) methods both with the 6‐31G** basis set. It was found that H3+ forms various stable endohedral complexes inside the cage. Six configurations have been examined among which four were stable compared with the separated initial species, the dissociated H2 + H+ inside the cage being the most stable. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

10.
Ab initio molecular orbital theory and density functional theory have been used to study nine isomers of N7 ionic clusters with low spin at the HF/6-31G*, MP2/6-31G*, B3LYP/6-31G*, and B3LYP/6-311(+)G* levels of theory. All stationary points are examined with harmonic vibrational frequency analyses. Four N7 + isomers and five N7 isomers are determined to be local minima or very close to the minima on their potential-energy hypersurfaces, respectively. For N7 + and N7 , the energetically low lying isomers are open-chain structures (C 2 v and C 2 v or C2). The results are very similar to those of other known odd-number nitrogen ions, such as N5 +, N9 +, and N9 , for which the open-chain structures are also the global minima. This research suggests that the N7 ionic clusters are likely to be stable and to be potential high-energy-density materials if they could be synthesized. Received: 16 July 2001 / Accepted: 8 October 2001 / Published online: 21 January 2002  相似文献   

11.
Ab initio MP2/6-31G*//HF/6-31G*+ZPE(HF/6-31G*) calculations of the potential energy surface in the vicinity of stationary points and the pathways of intramolecular rearrangements between low-lying structures of the OBe3F3 + cation detected in the mass spectra of μ4-Be4O(CF3COO)6 were carried out. Ten stable isomers with di- and tricoordinate oxygen atoms were localized. The relative energies of six structures lie in the range 0–8 kcal mol−1 and those of the remaining four structures lie in the range 20–40 kcal mol−1. Two most favorable isomers, aC 2v isomer with a dicoordinate oxygen atom, planar six-membered cycle, and one terminal fluorine atom and a pyramidalC 3v isomer with a tricoordinate oxygen atom and three bridging fluorine atoms, are almost degenerate in energy. The barriers to rearrangements with the breaking of one fluorine bridge are no higher than 4 kcal mol−1, except for the pyramidalC 3v isomer (∼16 kcal mol−1). On the contrary, rearrangements with the breaking of the O−Be bond occur with overcoming of a high energy barrier (∼24 kcal mol−1). A planarD 3h isomer with a tricoordinate oxygen atom and linear O−Be−H fragments was found to be the most favorable for the OBe3H3 + cation, a hydride analog of the OBe3F3 + ion; the energies of the remaining five isomers are more than 25 kcal mol−1 higher. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 420–430, March, 1999.  相似文献   

12.
Ab initio calculations have been performed to examine the properties of the protonated fluoroform cation (CF3H2+). These calculations show that the global minimum for CF3H2+ is [CF2H … FH]+ among three possible configurational isomers. This isomer is suggested to be an ion-dipole complex between CF2H+ and FH. The barrier to internal rotation of the bond between carbon of CF2H+ and fluorine of HF is calculated as 0.96 kcal mol−1 at the MP2/6-31G(d,p) level of theory. The heat of formation of CF3H2+ at 298.15 K is estimated to be 60.6 kcal mol−1 from the G2 calculation.  相似文献   

13.
A quantum-chemical study of neutral and protonated monoalkyl sulfates RHSO4and [RH2SO4]+(where R = CH3, C2H5, iso-C3H7, and tert-C4H9) is carried out. Calculations are performed using the Hartree–Fock method in the 6-31G** and 6-31++G** basis sets taking into account electron correlation according to the Müller–Plesset perturbation theory MP2/6-31+G*//6-31+G*. Protonated tert-butyl sulfate was also calculated by the DFT B3LYP/6-31++G** method. It was found that monoalkyl sulfates are covalent compounds, and the complete abstraction of alkyl carbenium ions from them has substantial energy cost: 196.4, 161.7, 150.8 and 136.0 kcal/mol, respectively. Protonated methyl and ethyl sulfates are also covalent compounds according to the calculation. They have lower but still high energies of heterolytic dissociation (65.0 and 33.5 kcal/mol, respectively). The energy of R+abstraction from protonated isopropyl sulfate is much lower: 23.6 kcal/mol. The main covalent state and the ion–molecular pair, which is a carbenium ion [C(CH3)2H]+solvated by the H2SO4molecule, have about the same energy. The ground state of protonated tert-butyl sulfate corresponds to the ion–molecular complex [C(CH3)+ 3H2SO4] with still lower energy of carbenium ion [C(CH3)3]+abstraction, which is equal to 10.0 kcal/mol. Calculation according to the DFT B3LYP/6-31++G** method shows the absence of a minimum for the protonated tert-butyl sulfate with a covalent structure on the potential energy surface.  相似文献   

14.
The optimized geometries and energies of fluorine-substituted ethylene dications C2HnF4-n 2+ (n = 0–4) have been investigated by means of ab initio methods. At the MP3/6-31G**//6-31G* + zero-point energy level of theory, the results predict that C2F42+ and C2HF32+ are planar, while C2H42+, C2H3F2+ and 1,1—C2H2F22+ prefer a perpendicular geometry. For 1,2—C2H2F22+ an energy difference of only 0.3 kcal/mol is found between the (trans) planar and perpendicular structure. The stabilizations attributed to hyperconjugation, fluorine lone-pair donation, and (C? F) double-bond conjugation are discussed. A comparison is made for the C? C and C? F stretching frequencies determined at 6-31G*//6-31G* between the neutral and dicationic species. The theoretically determined ionization energies for the vertical process N+ → N2+ at the MP3/6-31G*//3-21G level are compared with experimental Qmin values.  相似文献   

15.
Cluster-continuum models (KOH·nDMSO, n = 1, 5) were used to model the superbasic system “alkali metal hydroxide-dimethyl sulfoxide” within the framework of MP2/6-311++G**/ and B3LYP/6-31G* methods. The KOH molecule surrounded by five DMSO molecules exists as “solvate-loosened” ion pair with elongated K-O distance. It is proposed to consider the “solvate-loosened” ion pair of potassium cation with hydroxide anion in the surroundings of five solvent molecules as the catalytic coordination sphere of the superbasic system KOH-DMSO. Methanol and methanethiol molecules can be incorporated with ease into the first coordination sphere of potassium cation to form methoxide and methanethiolate ions. The possibility of nucleophilic attack of methoxide and methanethiolate ions on acetylene molecule in the first coordination sphere of potassium cation was studied. The model reaction system C2H2-CH3OK-H2O with one DMSO molecule included explicitly to maintain the “solvate-loosened” [CH3O]?...K+ ion pair and additional inclusion of solvent effects within the framework of the IEFPCM continuum model is the most preferable for serial calculations.  相似文献   

16.
The geometries, successive binding energies, vibrational frequencies, and infrared intensities are calculated for the [Li(H2O)n]+ and [K(H2O)n]+ (n = 1?4) complexes. The basis sets used are 6-31G* and LANL 1DZ (Los Alamos ECP +DZ ) at the SCF and MP 2 levels. There is an agreement for calculated structures and frequencies between the MP 2/6-31G* and MP 2/LANL 1DZ basis sets, which indicates that the latter can be used for calculations of water complexes with heavier ions. Our results are in a reasonable agreement with available experimental data and facilitate experimental study of these complexes. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
The relative energies of 11 [C3H3O]+ ions are calculated by different molecular orbital methods (MINDO/3, MNDO, ab initio with 3-21G and 4-31G* basis set and configuration interaction). The four most stable structures are: a ([CH2?CH? CO]+), b c ([CH?C? CHOH]+) and d ([CH2?C?COH]+); their relative energies at the CI/4-31G*//3-21G level are 0, 117, 171 and 218 kJ mol?1, respectively. The isomerizations c→[CH?CH? CHO]+→[CH2?C? CHO]+a and dissociations into [C2H3]++CO and [HCO]++C2H2 are explored. The calculated potential energy profile reveals that the energy-determining step is the 1,3-H migration c→[CH?CH? CHO]+. This explains the value of unity of the branching ratio and the spread of kinetic energy released for the two dissociation channels.  相似文献   

18.
The reactions of ?-C3H3+ (propargylium cation) with acetylene and diacetylene have been modeled kinetically. Data were obtained from Fourier Transform Ion Cyclotron Resonance (FTICR) experiments on these systems, which are themselves models for soot particle initiation. Acetylene forms an encounter complex with ?-C3H3+, but, in the absence of a third body collision, the complex decomposes to acetylene and c-C3H3+ (cyclopropenylium cation) at about 1/3 the rate it decomposes to acetylene and ?-C3H3+, in spite of the fact that c-C3H3+ is ca. 115 kJ/mol more stable than ?-C3H3+. The encounter complex is long enough lived, and energetic enough, to scramble deuterium in reactions between ?-C3H3+ and C2D2. These reactions have been successfully modeled, yielding a nearly statistical distribution of deuterium, and a rather large kinetic isotope effect. The more complex reactions of ?-C3H3+ with diacetylene have also been modeled.  相似文献   

19.
The isomerization of linear C3H 3 + in its reaction with acetylene to cyclic C3H 3 + was studied with a quadrupole ion trap mass spectrometer. The reaction of linear C3H 3 + with 13C2H2 shows that isomerization takes place via a [C5H 5 + ]* activated complex that is unstable relative to disproportionation back into the cyclic and linear forms of C3H 3 + and acetylene. The formation of carbon-13 labeled cyclic and linear C,Hi indicates that isomerization involves skeletal exchange. Collisional stabilization of the [C5H 5 + ]* collision complex was achieved at a helium pressure of approximately 1 mtorr.  相似文献   

20.
The kinetics of the hydrogen abstraction from H2O2 by ?OH has been modeled with MP2/6‐31G*//MP2/6‐31G*, MP2‐SAC//MP2/6‐31G*, MP2/6‐31+G**//MP2/6‐31+G**, MP2‐SAC// MP2/6‐31+G**, MP4(SDTQ)/6‐311G**//MP2/6‐31G*, CCSD(T)/6‐31G*//CCSD(T)/6‐31G*, CCSD(T)/6‐31G**//CCSD(T)/6‐31G**, CCSD(T)/6‐311++G**//MP2/6‐31G* in the gas phase. MD simulations have been used to generate initial geometries for the stationary points along the potential energy surface for hydrogen abstraction from H2O2. The effective fragment potential (EFP) has been used to optimize the relevant structures in solution. Furthermore, the IEFPCM model has been used for the supermolecules generated via MD calculations. IEFPCM/MP2/6‐31G* and IEFPCM/CCSD(T)/6‐31G* calculations have also been performed for structures without explicit water molecules. Experimentally, the rate constant for hydrogen abstraction by ?OH drops from 1.75 × 10?12 cm3 molecule?1 s?1 in the gas phase to 4.48 × 10?14 cm3 molecule?1 s?1 in solution. The same trend has been reproduced best with MP4 (SDTQ)/6‐311G**//MP2/6‐31G* in the gas phase (0.415 × 10?12 cm3 molecule?1 s?1) and with EFP (UHF/6‐31G*) in solution (3.23 × 10?14 cm3 molecule?1 s?1). © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 502–514, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号