首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The path-integral molecular dynamics and centroid molecular dynamics methods have been applied to investigate the behavior of liquid water at ambient conditions starting from a recently developed simple point charge/flexible (SPC/Fw) model. Several quantum structural, thermodynamic, and dynamical properties have been computed and compared to the corresponding classical values, as well as to the available experimental data. The path-integral molecular dynamics simulations show that the inclusion of quantum effects results in a less structured liquid with a reduced amount of hydrogen bonding in comparison to its classical analog. The nuclear quantization also leads to a smaller dielectric constant and a larger diffusion coefficient relative to the corresponding classical values. Collective and single molecule time correlation functions show a faster decay than their classical counterparts. Good agreement with the experimental measurements in the low-frequency region is obtained for the quantum infrared spectrum, which also shows a higher intensity and a redshift relative to its classical analog. A modification of the original parametrization of the SPC/Fw model is suggested and tested in order to construct an accurate quantum model, called q-SPC/Fw, for liquid water. The quantum results for several thermodynamic and dynamical properties computed with the new model are shown to be in a significantly better agreement with the experimental data. Finally, a force-matching approach was applied to the q-SPC/Fw model to derive an effective quantum force field for liquid water in which the effects due to the nuclear quantization are explicitly distinguished from those due to the underlying molecular interactions. Thermodynamic and dynamical properties computed using standard classical simulations with this effective quantum potential are found in excellent agreement with those obtained from significantly more computationally demanding full centroid molecular dynamics simulations. The present results suggest that the inclusion of nuclear quantum effects into an empirical model for water enhances the ability of such model to faithfully represent experimental data, presumably through an increased ability of the model itself to capture realistic physical effects.  相似文献   

2.
We present a study of the interaction between a phenol molecule and an aerosol particle. The aerosol particle is represented by a cluster of 128 water molecules. Using a classical approach, we present interaction energy surfaces for different relative distances and for three orientations of phenol relative to the particle. From the energy surfaces we find the reaction pathways with the largest interaction between the molecule and the particle. We use a quantum mechanics/molecular mechanics (QM/MM) method to calculate a potential energy curve for each reaction path. Coupled cluster methods are used for the part of the system described by quantum mechanics, while the part described by molecular mechanics is represented by a polarizable force field. We compare results obtained from the classical approach with the QM/MM results. Furthermore, we use the QM/MM results to calculate mass accommodation coefficients using a quantum-statistical (QM-ST) model and show how the mass accommodation coefficient depends on the relative orientation of phenol with respect to the aerosol particle.  相似文献   

3.
A force field for liquid water including polarization effects has been constructed using an artificial neural network (ANN). It is essential to include a many-body polarization effect explicitly into a potential energy function in order to treat liquid water which is dense and highly polar. The new potential energy function is a combination of empirical and nonempirical potentials. The TIP4P model was used for the empirical part of the potential. For the nonempirical part, an ANN with a back-propagation of error algorithm (BPNN) was introduced to reproduce the complicated many-body interaction energy surface from ab initio quantum mechanical calculations. BPNN, described in terms of a matrix, provides enough flexibility to describe the complex potential energy surface (PES). The structural and thermodynamic properties, calculated by isobaric-isothermal (constant-NPT) Monte Carlo simulations with the new polarizable force field for water, are compatible with experimental results. Thus, the simulation establishes the validity of using our estimated PES with a polarization effect for accurate predictions of liquid state properties. Applications of this approach are simple and systematic so that it can easily be applied to the development of other force fields besides the water-water system.  相似文献   

4.
An ab initio quantum mechanical charge field molecular dynamics simulation was carried out for one methanol molecule in water to analyze the structure and dynamics of hydrophobic and hydrophilic groups. It is found that water molecules around the methyl group form a cage-like structure whereas the hydroxyl group acts as both hydrogen bond donor and acceptor, thus forming several hydrogen bonds with water molecules. The dynamic analyses correlate well with the structural data, evaluated by means of radial distribution functions, angular distribution functions, and coordination number distributions. The overall ligand mean residence time, τ identifies the methanol molecule as structure maker. The relative dynamics data of hydrogen bonds between hydroxyl of methanol and water molecules prove the existence of both strong and weak hydrogen bonds. The results obtained from the simulation are in excellent agreement with the experimental results for dilute solution of CH(3)OH in water. The overall hydration shell of methanol consists in average of 18 water molecules out of which three are hydrogen bonded.  相似文献   

5.
A method to calculate the classical and quantum free energy of a liquid from a computer simulation by using cell theory [J. Chem. Phys. 2007, 126, 064504] is tested for liquid water and ice Ih against experiment as a function of temperature. This fast and efficient method reproduces reasonably well the experimental values of entropy, enthalpy, and free energy of a liquid across the supercooled, stable, and superheated range of temperatures considered. There are small differences between classical and quantum results of water at 298 K, necessitating a small correction term to reproduce water's enthalpy of vaporisation. Only at higher temperatures is entropy underestimated by up to 9 J K(-1) mol(-1) as verified by thermodynamic integration calculations. Satisfactory agreement for ice, however, is only obtained by using the quantum formulation. Even then, at higher temperatures, the entropies exceed experiment by up to 15 J K(-1) mol(-1). Further insight into the quantum nature of water is provided by inspecting the temperature dependence of the frequencies. The harmonic approximation is further supported by the harmonic force and torque distributions and the very similar entropies obtained from the force and torque variances. All these results suggest that the single molecule harmonic oscillator approximation for water, although not exact, provides a rapid, insightful, and useful means to evaluate the thermodynamic properties of water from a computer simulation in a way that can account for the quantization of water's energy levels.  相似文献   

6.
The authors propose a new classical model for the water molecule. The geometry of the molecule is built on the rigid TIP5P model and has the experimental gas phase dipole moment of water created by four equal point charges. The model preserves its rigidity but the size of the charges increases or decreases following the electric field created by the rest of the molecules. The polarization is expressed by an electric field dependent nonlinear polarization function. The increasing dipole of the molecule slightly increases the size of the water molecule expressed by the oxygen-centered sigma parameter of the Lennard-Jones interaction. After refining the adjustable parameters, the authors performed Monte Carlo simulations to check the ability of the new model in the ice, liquid, and gas phases. They determined the density and internal energy of several ice polymorphs, liquid water, and gaseous water and calculated the heat capacity, the isothermal compressibility, the isobar heat expansion coefficients, and the dielectric constant of ambient water. They also determined the pair-correlation functions of ambient water and calculated the energy of the water dimer. The accuracy of theirs results was satisfactory.  相似文献   

7.
A method to calculate the free energy of water from computer simulation is presented. Based on cell theory, it approximates the potential energy surface sampled in the simulation by an anisotropic six-dimensional harmonic potential to model the three hindered translations and three hindered rotations of a single rigid water molecule. The potential is parametrized from the magnitude of the forces and torques measured in the simulation. The entropy of these six harmonic oscillators is calculated and summed with a conformational term to give the total entropy. Combining this with the simulation enthalpy yields the free energy. The six water models examined are TIP3P, SPC, TIP4P, SPC/E, TIP5P, and TIP4P-Ew. The results reproduce experiment well: free energies for all models are within 1.6 kJ mol(-1) and entropies are within 3.6 J K(-1) mol(-1). Approximately two-thirds of the entropy comes from translation, a third from rotation, and 5% from conformation. Vibrational frequencies match those in the experimental infrared spectrum and assist in their assignment. Intermolecular quantum effects are found to be small, with free energies for the classical oscillator lying 0.5-0.7 kJ mol(-1) higher than in the quantum case. Molecular displacements and vibrational and zero point energies are also calculated. Altogether, these results validate the harmonic oscillator as a quantitative model for the liquid state.  相似文献   

8.
Electronic properties of a water molecule embedded in a water droplet are studied in the framework of the generalized self-consistent reaction field approach, using ab initio Hartree-Fock and configuration interaction wave functions. Electrostatic and inductive effects of the surrounding water molecules were calculated with the help of configurations drawn from a classical molecular dynamics simulation. Basis-set effects and solute-solvent interaction operator representation are examined. Embedding energies and liquid-phase multipole moments obtained from the present mixed quantum-classical model are compared with corresponding quantities for purely classical water models. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
We have used the ring polymer molecular-dynamics method to study the translational and orientational motions in an extended simple point charge model of liquid water under ambient conditions. We find, in agreement with previous studies, that quantum-mechanical effects increase the self-diffusion coefficient D and decrease the relaxation times around the principal axes of the water molecule by a factor of around 1.5. These results are consistent with a simple Stokes-Einstein picture of the molecular motion and suggest that the main effect of the quantum fluctuations is to decrease the viscosity of the liquid by about a third. We then go on to consider the system-size scaling of the calculated self-diffusion coefficient and show that an appropriate extrapolation to the limit of infinite system size increases D by a further factor of around 1.3 over the value obtained from a simulation of a system containing 216 water molecules. These findings are discussed in light of the widespread use of classical molecular-dynamics simulations of this sort of size to model the dynamics of aqueous systems.  相似文献   

10.
11.
A hybrid quantum mechanical and molecular mechanical potential is used in Monte Carlo simulations to examine the solvent effects on the electronic excitation energy for the n→π* transition of pyrimidine in aqueous solution. In the present study, the pyrimidine molecule is described by the semi-empirical AM1 model, while the solvent molecules are treated classically. Two sets of calculations are performed: the first involves the use of the pairwise three-point charge TIP3P model for water, and the second computation employs a polarizable many-body potential for the solvent. The latter calculation takes into account the effect of solvent polarization following the solute electronic excitation, and makes a correction to the energies determined using pairwise potentials, which neglects such fast polarization effects and overestimates the solute-solvent interactions on the Franck-Condon excited states. Our simulation studies of pyrimidine in water indicate that the solvent charge redistribution following the solute electronic excitation makes modest corrections (about −130␣cm−1) to the energy predicted by using pairwise potentials. Specific hydrogen bonding interactions between pyrimidine and water are important for the prediction of solvatochromic shifts for pyrimidine. The computed n→π* blue shift is 2275±110 cm−1, which may be compared with the experimental value (2700 cm−1) from isooctane to water. Received: 14 January 1997 / Accepted: 21 February 1997  相似文献   

12.
Pair interaction potentials (IPs) were defined to describe the La(3+)-OH(2) interaction for simulating the La(3+) hydration in aqueous solution. La(3+)-OH(2) IPs are taken from the literature or parametrized essentially to reproduce ab initio calculations at the second-order Moller-Plesset level of theory on La(H(2)O)(8) (3+). The IPs are compared and used with molecular dynamics (MD) including explicit polarization, periodic boundary conditions of La(H(2)O)(216) (3+) boxes, and TIP3P water model modified to include explicit polarization. As expected, explicit polarization is crucial for obtaining both correct La-O distances (r(La-O)) and La(3+) coordination number (CN). Including polarization also modifies hydration structure up to the second hydration shell and decreases the number of water exchanges between the La(3+) first and second hydration shells. r(La-O) ((1))=2.52 A and CN((1))=9.02 are obtained here for our best potential. These values are in good agreement with experimental data. The tested La-O IPs appear to essentially account for the La-O short distance repulsion. As a consequence, we propose that most of the multibody effects are correctly described by the explicit polarization contributions even in the first La(3+) hydration shell. The MD simulation results are slightly improved by adding a-typically negative 1r(6)-slightly attractive contribution to the-typically exponential-repulsive term of the La-O IP. Mean residence times are obtained from MD simulations for a water molecule in the first (1082 ps) and second (7.6 ps) hydration shells of La(3+). The corresponding water exchange is a concerted mechanism: a water molecule leaving La(H(2)O)(9) (3+) in the opposite direction to the incoming water molecule. La(H(2)O)(9) (3+) has a slightly distorded "6+3" tricapped trigonal prism D(3h) structure, and the weakest bonding is in the medium triangle, where water exchanges take place.  相似文献   

13.
A molecular dynamics (MD) simulation based on a combined ab initio quantum mechanics/molecular mechanics (QM/MM) method has been performed to investigate the solvation structure and dynamics of H3O+ in water. The QM region is a sphere around the central H3O+ ion, and contains about 6-8 water molecules. It is treated at the Hartree-Fock (HF) level, while the rest of the system is described by means of classical pair potentials. The Eigen complex (H9O4+) is found to be the most prevalent species in the aqueous solution, partly due to the selection scheme of the center of the QM region. The QM/MM results show that the Eigen complex frequently converts back and forth into the Zundel (H5O2+) structure. Besides the three nearest-neighbor water molecules directly hydrogen-bonded to H3O+, other neighbor waters, such as a fourth water molecule which interacts preferentially with the oxygen atom of the hydronium ion, are found occasionally near the ion. Analyses of the water exchange processes and the mean residence times of water molecules in the ion's hydration shell indicate that such next-nearest neighbor water molecules participate in the rearrangement of the hydrogen bond network during fluctuative formation of the Zundel ion and, thus, contribute to the Grotthuss transport of the proton.  相似文献   

14.
The results of classical and quantum simulations of liquid water over a wide range of temperatures are compared to probe the impact of quantization on the properties of liquid water. We show that, when treated quantum mechanically, water molecules have an enhanced probability of accessing nontetrahedral coordination in the local three-dimensional structure. We discuss how this enhanced probability, also called "effective tunneling", is related to the dynamics of the hydrogen-bond breaking and molecular diffusion in the liquid. We explore in detail how local molecular environments affect the manifestation of quantum effects and identify a previously unreported and apparently unique behavior of the quantum mechanical uncertainty of the water molecule as a function of temperature. The nonmonotonic behavior of the quantum mechanical uncertainty with temperature is shown to be due to the notable strength of the water-water interaction in the condensed phase and becomes further evidence of the importance of the water structure in the properties of this ubiquitous liquid.  相似文献   

15.
In the current opinion, the inclusion of polarization response in classical computer simulations is considered as one of the most important and urgent improvements to be implemented in modern empirical potential models. In this work we focus on the capability of polarizable models, based on the pairwise Coulomb interactions, to model systems where strong electric fields enter into play. As shown by Masia, Probst, and Rey (MPR) [in J. Chem. Phys. 121, 7362 (2004)], when a molecule interacts with point charges, polarizable models show underpolarization with respect to ab initio methods. We prove that this underpolarization, clearly related to nonlinear polarization effects, cannot be simply ascribed to the lack of hyperpolarization in the polarizable models, as suggested by MPR. Analysis of the electron-density rearrangement induced on a water molecule by a point charge reveals a twofold level of polarization response. One level involves intramolecular charge transfer on the whole molecular volume, with the related polarization exhibiting a seemingly linear behavior with the external electric field. The other nonlinear polarization level occurs only at strong electric fields and is found to be strictly correlated to the quantum-mechanical nature of the water molecule. The latter type of polarization has a local character, being limited to the space region of the water lone pairs.  相似文献   

16.
Quantum and classical simulations are carried out on ice Ih over a range of temperatures utilizing the TIP4P water model. The rigid-body centroid molecular dynamics method employed allows for the investigation of equilibrium and dynamical properties of the quantum system. The impact of quantization on the local structure, as measured by the radial and spatial distribution functions, as well as the energy is presented. The effects of quantization on the lattice vibrations, associated with the molecular translations and librations, are also reported. Comparison of quantum and classical simulation results indicates that shifts in the average potential energy are equivalent to rising the temperature about 80 K and are therefore non-negligible. The energy shifts due to quantization and the quantum mechanical uncertainties observed in ice are smaller than the values previously reported for liquid water. Additionally, we carry out a comparative study of melting in our classical and quantum simulations and show that there are significant differences between classical and quantum ice.  相似文献   

17.
We have studied the hydration and diffusion of the hydroxyl radical OH0 in water using classical molecular dynamics. We report the atomic radial distribution functions, hydrogen-bond distributions, angular distribution functions, and lifetimes of the hydration structures. The most frequent hydration structure in the OH0 has one water molecule bound to the OH0 oxygen (57% of the time), and one water molecule bound to the OH0 hydrogen (88% of the time). In the hydrogen bonds between the OH0 and the water that surrounds it the OH0 acts mainly as proton donor. These hydrogen bonds take place in a low percentage, indicating little adaptability of the molecule to the structure of the solvent. All hydration structures of the OH0 have shorter lifetimes than those corresponding to the hydration structures of the water molecule. The value of the diffusion coefficient of the OH0 obtained from the simulation was 7.1x10(-9) m2 s(-1), which is higher than those of the water and the OH-.  相似文献   

18.
We have evaluated the extent to which classical polarizable force fields, based either on the chemical potential equalization principle or on distributed polarizabilities in the framework of the Sum of Interactions Between Fragments Ab initio computed (SIBFA), can reproduce the ab initio polarization energy and the dipole moment of three distinct water oligomers: bifurcated chains, transverse hydrogen-bonded chains, and longitudinal hydrogen-bonded chains of helical shape. To analyze the many-body polarization effect, chains of different size, i.e., from 2 to 12 water monomers, have been considered. Although the dipole moment is a well-defined quantity in both classical polarizable models and quantum mechanical methods, polarization energy can be defined unequivocally only in the former type of approaches. In this study we have used the Kitaura-Morokuma (KM) procedure. Although the KM approach is on the one hand known to overestimate the polarization energy for strongly interacting molecules, on the other hand it can account for the many-body polarization effectively, whereas some other procedures do not. Our data show that, if off-centered lone pair polarizabilities are explicitly represented, classical polarizable force fields can afford a close agreement with the ab initio results, both in terms of polarization energy and in terms of dipole moment.  相似文献   

19.
Electronic polarization induced by the interaction of a reference molecule with a liquid environment is expected to affect the magnetic shielding constants. Understanding this effect using realistic theoretical models is important for proper use of nuclear magnetic resonance in molecular characterization. In this work, we consider the pyridine molecule in water as a model system to briefly investigate this aspect. Thus, Monte Carlo simulations and quantum mechanics calculations based on the B3LYP/6-311++G (d,p) are used to analyze different aspects of the solvent effects on the 15N magnetic shielding constant of pyridine in water. This includes in special the geometry relaxation and the electronic polarization of the solute by the solvent. The polarization effect is found to be very important, but, as expected for pyridine, the geometry relaxation contribution is essentially negligible. Using an average electrostatic model of the solvent, the magnetic shielding constant is calculated as −58.7 ppm, in good agreement with the experimental value of −56.3 ppm. The explicit inclusion of hydrogen-bonded water molecules embedded in the electrostatic field of the remaining solvent molecules gives the value of −61.8 ppm.  相似文献   

20.
We present a fully quantum mechanical calculation for binding interaction between HIV-1 protease (PR) and the water molecule W301 which bridges the flaps of the protease with the inhibitors of PR. The quantum calculation is made possible by applying a recently developed molecular fractionation with conjugate caps (MFCC) method which divides a protein molecule into capped amino acid-based fragments and their conjugate caps. These individual fragments are properly treated to preserve the chemical property of bonds that are cut. Ab initio methods at HF, B3LYP, and MP2 levels with a fixed basis set 6-31+G* have been employed in the present calculation. The MFCC calculation produces a quantum mechanical interaction "map" representing interactions between individual residues of PR and W301. This enables a detailed quantitative analysis on binding of W301 to specific residues of PR at quantum mechanical level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号