首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a positive integer n, does there exist a vertex-transitive graph Γ on n vertices which is not a Cayley graph, or, equivalently, a graph Γ on n vertices such that Aut Γ is transitive on vertices but none of its subgroups are regular on vertices? Previous work (by Alspach and Parsons, Frucht, Graver and Watkins, Marusic and Scapellato, and McKay and the second author) has produced answers to this question if n is prime, or divisible by the square of some prime, or if n is the product of two distinct primes. In this paper we consider the simplest unresolved case for even integers, namely for integers of the form n = 2pq, where 2 < q < p, and p and q are primes. We give a new construction of an infinite family of vertex-transitive graphs on 2pq vertices which are not Cayley graphs in the case where p ≡ 1 (mod q). Further, if p ? 1 (mod q), pq ≡ 3(mod 4), and if every vertex-transitive graph of order pq is a Cayley graph, then it is shown that, either 2pq = 66, or every vertex-transitive graph of order 2pq admitting a transitive imprimitive group of automorphisms is a Cayley graph.  相似文献   

2.
In 1983, the second author [D. Maru?i?, Ars Combinatoria 16B (1983), 297–302] asked for which positive integers n there exists a non‐Cayley vertex‐transitive graph on n vertices. (The term non‐Cayley numbers has later been given to such integers.) Motivated by this problem, Feng [Discrete Math 248 (2002), 265–269] asked to determine the smallest valency ?(n) among valencies of non‐Cayley vertex‐transitive graphs of order n. As cycles are clearly Cayley graphs, ?(n)?3 for any non‐Cayley number n. In this paper a goal is set to determine those non‐Cayley numbers n for which ?(n) = 3, and among the latter to determine those for which the generalized Petersen graphs are the only non‐Cayley vertex‐transitive graphs of order n. It is known that for a prime p every vertex‐transitive graph of order p, p2 or p3 is a Cayley graph, and that, with the exception of the Coxeter graph, every cubic non‐Cayley vertex‐transitive graph of order 2p, 4p or 2p2 is a generalized Petersen graph. In this paper the next natural step is taken by proving that every cubic non‐Cayley vertex‐transitive graph of order 4p2, p>7 a prime, is a generalized Petersen graph. In addition, cubic non‐Cayley vertex‐transitive graphs of order 2pk, where p>7 is a prime and k?p, are characterized. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 77–95, 2012  相似文献   

3.
A graph is vertex-transitive if its automorphism group acts transitively on vertices of the graph. A vertex-transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this paper, a complete classification is given of tetravalent vertex-transitive non-Cayley graphs of order \(2p^2\) for any prime p.  相似文献   

4.
《Discrete Mathematics》2004,274(1-3):187-198
Let p be a prime. It was shown by Folkman (J. Combin. Theory 3 (1967) 215) that a regular edge-transitive graph of order 2p or 2p2 is necessarily vertex-transitive. In this paper an extension of his result in the case of cubic graphs is given. It is proved that, with the exception of the Gray graph on 54 vertices, every cubic edge-transitive graph of order 2p3 is vertex-transitive.  相似文献   

5.
A graph is vertex‐transitive if its automorphism group acts transitively on vertices of the graph. A vertex‐transitive graph is a Cayley graph if its automorphism group contains a subgroup acting regularly on its vertices. In this article, the tetravalent vertex‐transitive non‐Cayley graphs of order 4p are classified for each prime p. As a result, there are one sporadic and five infinite families of such graphs, of which the sporadic one has order 20, and one infinite family exists for every prime p>3, two families exist if and only if p≡1 (mod 8) and the other two families exist if and only if p≡1 (mod 4). For each family there is a unique graph for a given order. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
Half-Transitive Graphs of Prime-Cube Order   总被引:6,自引:0,他引:6  
We call an undirected graph X half-transitive if the automorphism group Aut X of X acts transitively on the vertex set and edge set but not on the set of ordered pairs of adjacent vertices of X. In this paper we determine all half-transitive graphs of order p 3 and degree 4, where p is an odd prime; namely, we prove that all such graphs are Cayley graphs on the non-Abelian group of order p 3 and exponent p 2, and up to isomorphism there are exactly (p – 1)/2 such graphs. As a byproduct, this proves the uniqueness of Holt's half-transitive graph with 27 vertices.  相似文献   

7.
We characterize the class of self-complementary vertex-transitive digraphs on a prime number p of vertices. Using this, we enumerate (i) self-complementary strongly vertex-transitive digraphs on p vertices, (ii) self-complementary vertex-transitive digraphs on p vertices, (iii) self-complementary vertex-transitive graphs on p vertices. Finally it is shown that every self-complementary vertex-transitive digraph on p vertices is either a tournament or a graph.  相似文献   

8.
A graph is said to be vertex-transitive non-Cayley if its full automorphism group acts transitively on its vertices and contains no subgroups acting regularly on its vertices. In this paper, a complete classification of cubic vertex-transitive non-Cayley graphs of order 12p, where p is a prime, is given. As a result, there are 11 sporadic and one infinite family of such graphs, of which the sporadic ones occur when p equals 5, 7 or 17, and the infinite family exists if and only if p ≡ 1 (mod 4), and in this family there is a unique graph for a given order.  相似文献   

9.
Non‐CI self‐complementary circulant graphs of prime‐squared order are constructed and enumerated. It is shown that for prime p, there exists a self‐complementary circulant graph of order p2 not Cayley isomorphic to its complement if and only if p ≡ 1 (mod 8). Such graphs are also enumerated. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 128–141, 2000  相似文献   

10.
We prove that every connected vertex-transitive graph on n ≥ 4 vertices has a cycle longer than (3n)1/2. The correct order of magnitude of the longest cycle seems to be a very hard question.  相似文献   

11.
A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive but not vertex-transitive. Let p be a prime. It was shown by Folkman (J. Combin. Theory 3 (1967) 215–232) that a regular edge-transitive graph of order 2p or 2p 2 is necessarily vertex-transitive. In this paper, an extension of his result in the case of cubic graphs is given. It is proved that, every cubic edge-transitive graph of order 8p is symmetric, and then all such graphs are classified.  相似文献   

12.
A graph is one-regular if its automorphism group acts regularly on the set of its arcs.Let n be a square-free integer.In this paper,we show that a cubic one-regular graph of order 2n exists if and only if n=3~tp1p2…p_s≥13,where t≤1,s≥1 and p_i's are distinct primes such that 3|(P_i—1). For such an integer n,there are 2~(s-1) non-isomorphic cubic one-regular graphs of order 2n,which are all Cayley graphs on the dihedral group of order 2n.As a result,no cubic one-regular graphs of order 4 times an odd square-free integer exist.  相似文献   

13.
We investigate various features of a quite new family of graphs, introduced as a possible example of vertex-transitive graph not roughly isometric with a Cayley graph of some finitely generated group. We exhibit a natural compactification and study a large class of random walks, proving theorems concerning almost sure convergence to the boundary, a strong law of large numbers and a central limit theorem. The asymptotic type of then-step transition probabilities of the simple random walk is determined.  相似文献   

14.
M. Stiebitz 《Combinatorica》1987,7(3):303-312
Some problems and results on the distribution of subgraphs in colour-critical graphs are discussed. In section 3 arbitrarily largek-critical graphs withn vertices are constructed such that, in order to reduce the chromatic number tok−2, at leastc k n 2 edges must be removed. In section 4 it is proved that a 4-critical graph withn vertices contains at mostn triangles. Further it is proved that ak-critical graph which is not a complete graph contains a (k−1)-critical graph which is not a complete graph.  相似文献   

15.
We consider the class of the topologically locally finite (in short TLF) planar vertex-transitive graphs. We characterize these graphs by finite combinatorial objects called labeling schemes. As a result, we are able to enumerate and describe all TLF-planar vertex-transitive graphs of given degree, as well as most of their transitive groups of automorphisms. In addition,we are able to decide whether a given TLF-planar transitive graph is Cayley or not. This class contains all the one-ended planar Cayley graphs and the normal transitive tilings of the plane.  相似文献   

16.
It is well known that the edge-connectivity of a simple, connected, vertex-transitive graph attains its regular degree. It is then natural to consider the relationship between the graph’s edge-connectivity and the number of orbits of its automorphism group. In this paper, we discuss the edge connectedness of graphs with two orbits of the same size, and characterize when these double-orbit graphs are maximally edge connected and super-edge-connected. We also obtain a sufficient condition for some double-orbit graphs to be λ-optimal. Furthermore, by applying our results we obtain some results on vertex/edge-transitive bipartite graphs, mixed Cayley graphs and half vertex-transitive graphs.  相似文献   

17.
Let ℋ︁ be a family of graphs. A graph T is ℋ︁‐universal if it contains a copy of each H ∈ℋ︁ as a subgraph. Let ℋ︁(k,n) denote the family of graphs on n vertices with maximum degree at most k. For all positive integers k and n, we construct an ℋ︁(k,n)‐universal graph T with edges and exactly n vertices. The number of edges is almost as small as possible, as Ω(n2‐2/k) is a lower bound for the number of edges in any such graph. The construction of T is explicit, whereas the proof of universality is probabilistic and is based on a novel graph decomposition result and on the properties of random walks on expanders. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

18.
A graph X is said to be distance-balanced if for any edge uv of X, the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u. A graph X is said to be strongly distance-balanced if for any edge uv of X and any integer k, the number of vertices at distance k from u and at distance k+1 from v is equal to the number of vertices at distance k+1 from u and at distance k from v. Exploring the connection between symmetry properties of graphs and the metric property of being (strongly) distance-balanced is the main theme of this article. That a vertex-transitive graph is necessarily strongly distance-balanced and thus also distance-balanced is an easy observation. With only a slight relaxation of the transitivity condition, the situation changes drastically: there are infinite families of semisymmetric graphs (that is, graphs which are edge-transitive, but not vertex-transitive) which are distance-balanced, but there are also infinite families of semisymmetric graphs which are not distance-balanced. Results on the distance-balanced property in product graphs prove helpful in obtaining these constructions. Finally, a complete classification of strongly distance-balanced graphs is given for the following infinite families of generalized Petersen graphs: GP(n,2), GP(5k+1,k), GP(3k±3,k), and GP(2k+2,k).  相似文献   

19.
The energy of unitary cayley graphs   总被引:1,自引:0,他引:1  
A graph G of order n is called hyperenergetic if E(G)>2n-2, where E(G) denotes the energy of G. The unitary Cayley graph Xn has vertex set Zn={0,1,2,…,n-1} and vertices a and b are adjacent, if gcd(a-b,n)=1. These graphs have integral spectrum and play an important role in modeling quantum spin networks supporting the perfect state transfer. We show that the unitary Cayley graph Xn is hyperenergetic if and only if n has at least two prime factors greater than 2 or at least three distinct prime factors. In addition, we calculate the energy of the complement of unitary Cayley graph and prove that is hyperenergetic if and only if n has at least two distinct prime factors and n≠2p, where p is a prime number. By extending this approach, for every fixed , we construct families of k hyperenergetic non-cospectral integral circulant n-vertex graphs with equal energy.  相似文献   

20.
A graph is vertex?transitive or symmetric if its automorphism group acts transitively on vertices or ordered adjacent pairs of vertices of the graph, respectively. Let G be a finite group and S a subset of G such that 1?S and S={s?1 | sS}. The Cayleygraph Cay(G, S) on G with respect to S is defined as the graph with vertex set G and edge set {{g, sg} | gG, sS}. Feng and Kwak [J Combin Theory B 97 (2007), 627–646; J Austral Math Soc 81 (2006), 153–164] classified all cubic symmetric graphs of order 4p or 2p2 and in this article we classify all cubic symmetric graphs of order 2pq, where p and q are distinct odd primes. Furthermore, a classification of all cubic vertex‐transitive non‐Cayley graphs of order 2pq, which were investigated extensively in the literature, is given. As a result, among others, a classification of cubic vertex‐transitive graphs of order 2pq can be deduced. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 285–302, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号