首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For a positive integer k, a graph G is k-ordered hamiltonian if for every ordered sequence of k vertices there is a hamiltonian cycle that encounters the vertices of the sequence in the given order. It is shown that if G is a graph of order n with 3 ≤ kn/2, and deg(u) + deg(v) ≥ n + (3k − 9)/2 for every pair u, v of nonadjacent vertices of G, then G is k-ordered hamiltonian. Minimum degree conditions are also given for k-ordered hamiltonicity. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 199–210, 2003  相似文献   

2.
For a graph G, let σk(G) be the minimum degree sum of an independent set of k vertices. Ore showed that if G is a graph of order n?3 with σ2(G)?n then G is hamiltonian. Let κ(G) be the connectivity of a graph G. Bauer, Broersma, Li and Veldman proved that if G is a 2-connected graph on n vertices with σ3(G)?n+κ(G), then G is hamiltonian. On the other hand, Bondy showed that if G is a 2-connected graph on n vertices with σ3(G)?n+2, then each longest cycle of G is a dominating cycle. In this paper, we prove that if G is a 3-connected graph on n vertices with σ4(G)?n+κ(G)+3, then G contains a longest cycle which is a dominating cycle.  相似文献   

3.
For a graph G and an integer k, denote by Vk the set {vV(G) | d(v) ≥ k}. Veldman proved that if G is a 2-connected graph of order n with n3k - 2 and |Vk| ≤ k, then G has a cycle containing all vertices of Vk. It is shown that the upper bound k on |Vk| is close to best possible in general. For the special case k = δ(G), it is conjectured that the condition |Vk| ≤ k can be omitted. Using a variation of Woodall's Hopping Lemma, the conjecture is proved under the additional condition that n2δ(G) + δ(G) + 1. This result is an almost-generalization of Jackson's Theorem that every 2-connected k-regular graph of order n with n3k is hamiltonian. An alternative proof of an extension of Jackson's Theorem is also presented. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
A set S of vertices in a graph G is said to be an edge-dominating set if every edge in G is incident with a vertex in S. A cycle in G is said to be a dominating cycle if its vertex set is an edge-dominating set. Nash-Williams [Edge-disjoint hamiltonian circuits in graphs with vertices of large valency, Studies in Pure Mathematics, Academic Press, London, 1971, pp. 157-183] has proved that every longest cycle in a 2-connected graph of order n and minimum degree at least is a dominating cycle. In this paper, we prove that for a prescribed positive integer k, under the same minimum degree condition, if n is sufficiently large and if we take k disjoint cycles so that they contain as many vertices as possible, then these cycles form an edge-dominating set. Nash-Williams’ Theorem corresponds to the case of k=1 of this result.  相似文献   

5.
Let G be an (m+2)-graph on n vertices, and F be a linear forest in G with |E(F)|=m and ω1(F)=s, where ω1(F) is the number of components of order one in F. We denote by σ3(G) the minimum value of the degree sum of three vertices which are pairwise non-adjacent. In this paper, we give several σ3 conditions for a dominating cycle or a hamiltonian cycle passing through a linear forest. We first prove that if σ3(G)≥n+2m+2+max{s−3,0}, then every longest cycle passing through F is dominating. Using this result, we prove that if σ3(G)≥n+κ(G)+2m−1 then G contains a hamiltonian cycle passing through F. As a corollary, we obtain a result that if G is a 3-connected graph and σ3(G)≥n+κ(G)+2, then G is hamiltonian-connected.  相似文献   

6.
An independent set S of a graph G is said to be essential if S has a pair of vertices distance two apart in G. We prove that if every essential independent set S of order k ≥ 2 in a k-connected graph of order p satisfies max {deg v:v ϵ S} ≥ ½ p, then g is hamiltonian. This generalizes the result of Fan (J. Combinatorial Theory B 37 (1984), 221–227). If we consider the essential independent sets of order k + 1 instead of k in the assumption of the above statement, we can no longer assure the existence a hamiltonian cycle. However, we can still give a lower bound to the length of a longest cycle. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
It is well known that a graph G of order p ≥ 3 is Hamilton-connected if d(u) + d(v) ≥ p + 1 for each pair of nonadjacent vertices u and v. In this paper we consider connected graphs G of order at least 3 for which d(u) + d(v) ≥ |N(u) ∪ N(v) ∪ N(w)| + 1 for any path uwv with uvE(G), where N(x) denote the neighborhood of a vertex x. We prove that a graph G satisfying this condition has the following properties: (a) For each pair of nonadjacent vertices x, y of G and for each integer k, d(x, y) ≤ k ≤ |V(G)| − 1, there is an xy path of length k. (b) For each edge xy of G and for each integer k (excepting maybe one k η {3,4}) there is a cycle of length k containing xy. Consequently G is panconnected (and also edge pancyclic) if and only if each edge of G belongs to a triangle and a quadrangle. Our results imply some results of Williamson, Faudree, and Schelp. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
A hamiltonian graph G of order n is k-ordered, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices of G, there exists a hamiltonian cycle that encounters v1, v2, …, vk in this order. Theorems by Dirac and Ore, presenting sufficient conditions for a graph to be hamiltonian, are generalized to k-ordered hamiltonian graphs. The existence of k-ordered graphs with small maximum degree is investigated; in particular, a family of 4-regular 4-ordered graphs is described. A graph G of order n ≥ 3 is k-hamiltonian-connected, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices, G contains a v1-vk hamiltonian path that encounters v1, v2,…, vk in this order. It is shown that for k ≥ 3, every (k + 1)-hamiltonian-connected graph is k-ordered and a result of Ore on hamiltonian-connected graphs is generalized to k-hamiltonian-connected graphs. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
A Hamiltonian graph G of order n is k-ordered, 2 ≤ kn, if for every sequence v1, v2, …, vk of k distinct vertices of G, there exists a Hamiltonian cycle that encounters v1, v2, …, vk in this order. Define f(k, n) as the smallest integer m for which any graph on n vertices with minimum degree at least m is a k-ordered Hamiltonian graph. In this article, answering a question of Ng and Schultz, we determine f(k, n) if n is sufficiently large in terms of k. Let g(k, n) = − 1. More precisely, we show that f(k, n) = g(k, n) if n ≥ 11k − 3. Furthermore, we show that f(k, n) ≥ g(k, n) for any n ≥ 2k. Finally we show that f(k, n) > g(k, n) if 2kn ≤ 3k − 6. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 17–25, 1999  相似文献   

10.
For a graph G and an integer k ≥ 1, let ςk(G) = dG(vi): {v1, …, vk} is an independent set of vertices in G}. Enomoto proved the following theorem. Let s ≥ 1 and let G be a (s + 2)-connected graph. Then G has a cycle of length ≥ min{|V(G)|, ς2(G) − s} passing through any path of length s. We generalize this result as follows. Let k ≥ 3 and s ≥ 1 and let G be a (k + s − 1)-connected graph. Then G has a cycle of length ≥ min{|V(G)|, − s} passing through any path of length s. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 177–184, 1998  相似文献   

11.
Let G be a k-connected graph of order n. For an independent set c, let d(S) be the number of vertices adjacent to at least one vertex of S and > let i(S) be the number of vertices adjacent to at least |S| vertices of S. We prove that if there exists some s, 1 ≤ s ≤ k, such that ΣxiEX d(X\{Xi}) > s(n?1) – k[s/2] – i(X)[(s?1)/2] holds for every independetn set X ={x0, x1 ?xs} of s + 1 vertices, then G is hamiltonian. Several known results, including Fraisse's sufficient condition for hamiltonian graphs, are dervied as corollaries.  相似文献   

12.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

13.
In 1956, W.T. Tutte proved that a 4-connected planar graph is hamiltonian. Moreover, in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains a hamiltonian cycle through any two of its edges. We prove that a planar graph G has a cycle containing a given subset X of its vertex set and any two prescribed edges of the subgraph of G induced by X if |X|≥3 and if X is 4-connected in G. If X=V(G) then Sanders’ result follows.  相似文献   

14.
The hamiltonian index of a graph G is the smallest integer k such that the k‐th iterated line graph of G is hamiltonian. We first show that, with one exceptional case, adding an edge to a graph cannot increase its hamiltonian index. We use this result to prove that neither the contraction of an AG(F)‐contractible subgraph F of a graph G nor the closure operation performed on G (if G is claw‐free) affects the value of the hamiltonian index of a graph G. AMS Subject Classification (2000): 05C45, 05C35. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

15.
We prove that if G is k-connected (with k ≥ 2), then G contains either a cycle of length 4 or a connected subgraph of order 3 whose contraction results in a k-connected graph. This immediately implies that any k-connected graph has either a cycle of length 4 or a connected subgraph of order 3 whose deletion results in a (k − 1)-connected graph.  相似文献   

16.
It is shown that for k ≥ 3, every k-connected graph G with girth at least 4 contains an induced cycle C such that GV(C) is (k − 2)-connected.  相似文献   

17.
Let G be a K1,r ‐free graph (r ≥ 3) on n vertices. We prove that, for any induced path or induced cycle on k vertices in G (k ≥ 2r − 1 or k ≥ 2r, respectively), the degree sum of its vertices is at most (2r − 2)(n − α) where α is the independence number of G. As a corollary we obtain an upper bound on the length of a longest induced path and a longest induced cycle in a K1,r ‐free graph. Stronger bounds are given in the special case of claw‐free graphs (i.e., r = 3). Sharpness examples are also presented. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 131–143, 2001  相似文献   

18.
It was proved by Hell and Zhu that, if G is a series‐parallel graph of girth at least 2⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). In this article, we prove that the girth requirement is sharp, i.e., for any k ≥ 2, there is a series‐parallel graph G of girth 2⌊(3k − 1)/2⌋ − 1 such that χc(G) > 4k/(2k − 1). © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 185–198, 2000  相似文献   

19.
A noncomplete graph G is called an (n, k)‐graph if it is n‐connected and GX is not (n − |X| + 1)‐connected for any XV(G) with |X| ≤ k. Mader conjectured that for k ≥ 3 the graph K2k + 2 − (1‐factor) is the unique (2k, k)‐graph. We settle this conjecture for strongly regular graphs, for edge transitive graphs, and for vertex transitive graphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 36: 35–51, 2001  相似文献   

20.
A digraph G = (V, E) is primitive if, for some positive integer k, there is a uv walk of length k for every pair u, v of vertices of V. The minimum such k is called the exponent of G, denoted exp(G). The exponent of a vertex uV, denoted exp(u), is the least integer k such that there is a uv walk of length k for each vV. For a set XV, exp(X) is the least integer k such that for each vV there is a Xv walk of length k, i.e., a uv walk of length k for some uX. Let F(G, k) : = max{exp(X) : |X| = k} and F(n, k) : = max{F(G, k) : |V| = n}, where |X| and |V| denote the number of vertices in X and V, respectively. Recently, B. Liu and Q. Li proved F(n, k) = (nk)(n − 1) + 1 for all 1 ≤ kn − 1. In this article, for each k, 1 ≤ kn − 1, we characterize the digraphs G such that F(G, k) = F(n, k), thereby answering a question of R. Brualdi and B. Liu. We also find some new upper bounds on the (ordinary) exponent of G in terms of the maximum outdegree of G, Δ+(G) = max{d+(u) : uV}, and thus obtain a new refinement of the Wielandt bound (n − 1)2 + 1. © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 215–225, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号