首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotational vibrational fine structure and transition dipole moment of NO2 is measured using Doppler free saturation spectroscopy with an external grating cavity quantum cascade laser (QCL). The QCL wavelength is calibrated using a 310 cm long internally coupled Fabry–Perot interferometer. We obtain a frequency splitting of 139.68 ± 0.06 MHz (0.0047 cm−1) between the spin doublets (17) of 000 → 001 transition of NO2. The resolution of the QCL based saturation spectrometer is limited by the QCL linewidth of 3.99 MHz ( 0.00013 cm−1) deduced from the half width of the Lamb dips. The Lamb dip spectroscopy is utilized to obtain a vibrational dipole moment of 0.37 Debye for the (17) transitions.  相似文献   

2.
Solvent effect on the νc frequency of CH stretching vibration of the blue shifted F3CH…FCD3 complex has been studied in liquefied N2, CO, Ar, Kr and Xe. In the case of Xe, the spectroscopic measurements have also been extended to the solid state. It was found that the νc position of the complex in the solutions studied lowers with respect to the value in the gas phase. In liquid Xe, characterized by the largest permittivity, this effect reaches its maximum value of −14.5 cm−1. The νc frequency begins to grow again just below the freezing point of Xe, where a noticeable (15%) increase of the density of Xe occurs. The experimental results obtained for the liquid phase have been analyzed in the framework of the Onsager-like reaction field model and Polarizable Continuum Model (PCM) implemented into a standard Gaussian 98 Program.  相似文献   

3.
Indium tin oxide (ITO) nanopowder was added to a polymer film containing WO3 · H2O particles to enhance electron conductivity and complimentary Li ion kinetics in an electrochromic device. Film conductivity increased dramatically with ITO content, suggesting the formation of conductive ITO networks in the film. The improved electron conductivity leads to a substantial increase of the effective Li+ ion diffusion coefficient in the composite film, from 10−11 to 10−9 cm2/s. Electrochromic contrast studies revealed that the presence of the ITO networks leads to enhanced blue/green color contrast.  相似文献   

4.
Excitation spectra of Na fluorescence in mixtures with CF4 display a new band shifted by the energy of one-vibrational quantum of the IR active ν3-mode of CF4 (1281 cm−1) from Na 3d states. This band is attributed to a Na(3s)CF4(ν3 = 0) → Na(3d)CF4(ν3 = 1) transition and its intensity is explained by coupling with Na(4p)CF4(v3 = 0) resonance state which lies  180 cm−1 below in energy. An analogous satellite of the Na 6p state combined with the same vibration and lying close to the Na 7p state is reported and discussed.  相似文献   

5.
The effect of a small amount of poly(ethylene naphthalate) (PEN) in its blends with poly(trimethylene terephthalate) (PTT) on isothermal melt-crystallization kinetics and spherulitic morphology of the blends was thoroughly investigated. The maximum PEN content in the blends was 9 wt%. Due to the single composition-dependent glass transition temperature (Tg) that was observed for each blend, these blends appeared to be miscible in the amorphous state. After isothermal crystallization from the melt state, the neat PTT and its blends with PEN exhibited either double or triple melting endotherms. The triple endothermic peaks were observed in both the neat PTT and the blends when being crystallized at crystallization temperatures (Tc) of less than or equal to 195 °C. The equilibrium melting temperature () for the neat PTT was determined based on the linear Hoffman–Weeks extrapolative method to be 248 °C. Such values for the blends were found to decrease with the addition and increasing amount of PEN. Both the neat PTT and the blends were isothermally crystallized over the Tc range of 190–205 °C. At a given Tc, the 97PTT/3PEN blend exhibited a half-time of crystallization (t0.5) value that was lower, while it exhibited reciprocal half-time (), Avrami rate constant (KA), and spherulitic growth rate (G) values that were greater, than those of the neat PTT. With further increase in the PEN content, the t0.5 value increased, while the , KA, and G values decreased. Analysis of the G values based on the Lauritzen–Hoffman's (LH) secondary nucleation theory showed that the neat PTT and the 91PTT/9PEN blend exhibited a regime II→III transition at 194 °C (467.2 K), while no regime transition was observed for the other two blends. The lateral and the fold surface free energies (σ and σe) and the work of chain folding (q) for the neat PTT and the blends were 19.4, 30.2–46.3 erg cm−2, and 2.4–3.6 kcal mol−1, respectively. Lastly, the effect of both the Tc and the PEN content on morphology and texture of the PTT spherulites was also investigated and the results showed that the texture of the spherulites became coarser with increasing Tc and PEN content.  相似文献   

6.
Polyaniline was deposited potentiodynamically on a stainless steel substrate in the presence of an inorganic acids (sulfuric acid). The electrochemical characterization of the electrode was carried out by means of cyclic voltammetry and electrochemical impedance spectroscopy in the organic acids (p-toluene sulfonic acid) solution. The results show that polyaniline has a high specific capacitance of 431.8 F g−1 at 1 mV s−1, high coulombic efficiency of 95.6% at 20 mV s−1, and exhibits a high reversibility. This indicates the promising feasibility of the polyaniline used as an electrochemical capacitor material in the electrolyte of p-toluene sulfonic acid solution especially at high charge–discharge process.  相似文献   

7.
Porphines bearing two N-methyl-4-pyridylethynyl substituent reversibly undergo two one-electron reductions at room temperature. The anion radicals and di-anions show diminished visible bands (450 nm and 600–700 nm) and intense absorptions in the 800-nm and 1100-nm region, respectively. Some of the near-IR bands have extinction coefficients greater than 1.5 × 105 M−1 cm−1.  相似文献   

8.
Hydrogen peroxide (H2O2) is an important industrial chemical, but its current production methods are highly energy-intensive. This study presents a novel process for the production of H2O2 based on the bioelectrochemical oxidation of wastewater organics at an anode coupled to the cathodic reduction of oxygen to H2O2. At an applied voltage of 0.5 V, this system was capable of producing 1.9 ± 0.2 kg H2O2/m3/day from acetate at an overall efficiency of 83.1 ± 4.8%. As most of the required energy was derived from the acetate, the system had a low energy requirement of 0.93 kWh/kg H2O2.  相似文献   

9.
A new ion chromatography method is described for the simultaneous determination of Cl, NO3 and SO42−, using a selected eluent 1.3-mM sodium gluconate/1.3-mM borax (pH 8.5). The extraction methods of Cl, NO3, SO42− in vegetables are studied. The determination limits of Cl, NO3, SO42− are 0.17 μg/ml, 0.63 μg/ml and 0.81 μg/ml. The linear ranges are 060 μg/ml, 090 μg/ml and 090 μg/ml. The relative S.D. are <2.5%. The mean recoveries of Cl, NO3, SO42− in vegetables range from 97.0 to 104%.  相似文献   

10.
Nitrogen-doped TiO2 catalysts were prepared by a precipitation method. The samples were calcined at 400 °C for 4 h in air. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), low temperature N2-adsorption was used for structural characterization and UV-diffuse reflectance (UV-DR) was applied to investigate the optical properties of the as-prepared samples. It was found that microporous N-doped catalysts have solely anatase crystalline structure. Acidic treatment of the calcined samples was performed using sulfuric acid agitation. The crystalline structure remained unchanged due to surface treatment, while the porosity and the surface areas were decreased dramatically. Optical characterization of the doped catalysts showed that they could be excited by visible light photons in the 400–500 nm wavelength range (λg,1=390 nm, λg,2=510 nm). It was also established that surface treatment enhances the Vis-light absorption of the N-TiO2 powders. Finally the catalysts were tested in the photocatalytic degradation of phenol in aqueous suspensions. Two different light sources were used; one of them was a UV-rich high pressure Hg-lamp, while the other was a tubular visible light source. We found that using visible light illumination N-doped, acid treated TiO2 samples were more catalytically active than non-doped TiO2 catalysts.  相似文献   

11.
Snow-ball flower like Ni nanoparticles have been synthesized using negatively charged micelles. Negatively charged micelles incorporate the Ni+2 onto its head group by electrostatic attraction and again a surfactant layer is arranged on positively charged Ni and thus in a repetitive way layer-by-layer a snow-ball flower like structure is formed. After reduction of Ni+2 to Ni atom by sodium borohydride and hydrated hydrazine the Ni clusters (3 nm) are formed and confined in micelles in snow-ball flower like pattern. The sizes of these nanoflowers are of 30 nm order. The particles are superparamagnetic in nature with blocking temperature about 117 K.  相似文献   

12.
A Pb(Zr,Ti)O3 precursor gel made from a sol prepared using 1,1,1,-tris(hydroxymethyl)ethane, lead acetate and zirconium and titanium propoxides, stabilised with acetylacetone, was analysed using TGA–FTIR analysis. Decomposition under nitrogen (N2) gave rise to evolved gas absorbance peaks at 215 °C, 279 °C, 300 °C and 386 °C, but organic vapours continued to be evolved, along with CO2 and CO until 950 °C. The final TGA step in N2 is thought to relate to decomposition of an intermediate carbonate phase and the final elimination of residues of triol or acetylacetonate species which form part of the polymeric gel structure. By contrast, heating in air promoted oxidative pyrolysis of the final organic groups at ≤450 °C. In air, an intermediate carbonate phase was decomposed by heating at 550 °C, allowing Pb(Zr,Ti)O3 to be produced some 400 °C below the equivalent N2 decomposition temperature.  相似文献   

13.
Thermogravimetric analyzer (TGA) has been applied to measure the kinetics of the thermal degradation of virgin polyvinylpyrrolidone (PVP) and a phase stabilized PVP–ammonium nitrate (AN) material. The PVP–AN samples have been prepared by using 20 wt.% of AN and PVP of three different molecular weights. Virgin PVP undergoes a major mass loss in the region 380–550 °C leaving a small amount of nonvolatile residue. The application of an advanced isoconversional method to the respective degradation process demonstrates that its effective activation energy increases from 70 kJ mol−1 to a plateau value at 250–300 kJ mol−1, which is independent of the molecular weight. The PVP–AN materials lose spontaneously 20% of their mass on heating above the glass transition temperature of the PVP matrix (160–180 °C). After the escape of AN, the remaining PVP matrix degrades in the same temperature region as virgin PVP, however, the effective activation energy of this degradation is 150–200 kJ mol−1.  相似文献   

14.
Copper(II) coordination compounds with ferulic acid   总被引:1,自引:0,他引:1  
The first two molecular structures of the ferulic acid (3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid, C10H10O4) coordination compounds are presented, namely, [Cu2(C10H9O4)4(CH3CN)2] 1 and [Cu2(C10H9O4)4(C6H6N2O)2]·4CH3CN (C6H6N2O = nicotinamide) 2. Both compounds were synthesised from the starting mixture of Cu2O and CuCl upon copper oxidation in the acetonitrile solution. The single-crystal X-ray diffraction analysis of 1 and 2 reveals the binuclear structure of the ‘paddlewheel’ type for both complexes. 1 and 2 are unstable outside mother liquid due to loosely bound acetonitrile molecules. The final products of decomposition are [Cu2(C10H9O4)4] 1a and [Cu2(C10H9O4)4(C6H6N2O)2] 2a, which were characterized by several physico-chemical methods. The triplet X-band EPR spectra of 1a and 2a, showing signals BZ1  15 mT, B2  460 mT and BZ2  580 mT, are in agreement with the expected data for the binuclear tetracarboxylate units, found in the structures of the parent complexes 1 and 2. Together with the room temperature magnetic susceptibility data, μeff/B.M. 1.40 (1a), 1.48 (2a), the EPR spectra analysis confirm the antiferromagnetic interaction in 1a and 2a. This is suggesting preservation and stability of the paddlewheel structures in 1a and 2a.  相似文献   

15.
X-ray diffraction study of supercooled water has been performed using an imaging-plate X-ray detector down to −15 °C. The peak at 10.8 Å, which grows with decreasing temperature, in the radial distribution function {D(r) − 4πr2ρ0} indicates the existence of clathrate-like structures in supercooled water. It is suggested that anomalous properties of water, which become more pronounced at low temperatures, are closely linked to the development of clathrate-like structures in water at low temperatures.  相似文献   

16.
In this paper the mechanisms of photodegradation of poly(neopentyl isophthalate) (PNI) in laboratory (Suntest XXL+, λ > 300 nm) and outdoor conditions are compared. Changes in the chemical composition were studied with ATR-FTIR, SEC and MALDI-ToF MS. Furthermore, the results were compared with data presented in our previous paper on PNI coatings that were aged in the UVACUBE (λ > 254 nm). Two main aspects of photodegradation of PNI are addressed in the present paper: the influence of different wavelengths and the comparison of laboratory and outdoor exposure regarding the mechanism of degradation. Under short (λ > 254 nm) and long (λ > 300 nm) wavelength irradiation similar products of degradation are formed. However, the presence of short wavelength radiation dramatically accelerates the overall rate of photodegradation of PNI. UV light absorption calculations confirm this experimentally found acceleration. Exposure of PNI in laboratory and outdoor conditions, both with wavelengths λ > 300 nm resulted in similar degradation products in the initial stage of ageing.  相似文献   

17.
PTR-MS is becoming a common method for the analysis of volatile organic compounds (VOCs) in human breath. Breath gas contains substantial and, particularly for bag samples, highly variable concentrations of water vapour (up to 6.3%) and carbon dioxide (up to 6.5%). The goal of this study was to investigate the effects of carbon dioxide on PTR-MS measurements; such effects can be expected in view of the already well known effects of water vapour. Carbon dioxide caused an increase of the pressure in the PTR-MS drift tube (1% increase for 5% CO2), and this effect was used to assess the CO2 concentration of breath gas samples along the way with the analysis of VOCs. Carbon dioxide enhanced the concentration ratio of protonated water clusters (H3O+H2O) to protonated water (H3O+) in the drift tube. Using the observed increase, being 60% for 5% CO2, it is estimated that the mobility of water cluster ions in pure CO2 is almost 65% lower than in air. Carbon dioxide had a significant effect on the mass spectra of the main breath gas components methanol, ethanol, 1-propanol, 2-propanol, acetone, and isoprene. Carbon dioxide caused a small increase (<10% for 5% CO2) of the normalised main signals for the non-fragmenting molecules methanol and acetone. The increase can be much higher for the fragmenting VOCs (ethanol, propanol, and isoprene) and was, for 5% CO2, up to 60% for ethanol. This effect of CO2 on fragment patterns is mainly a consequence of the increased abundance of protonated water clusters, which undergo softer reactions with VOCs than the hydronium ions. Breath gas samples stored in Teflon bags lost 80% of CO2 during 3 days, the decrease of VOC signals, however, is mainly attributed to decreasing VOC concentrations and to the loss of humidity from the bags.  相似文献   

18.
Jamin Koo  Sangsig Kim   《Solid State Sciences》2009,11(11):1870-1874
The modification of the electrical characteristics of field-effect transistors (FETs) with channels composed of n- or p-type silicon nanowires (SiNWs) by oxygen plasma treatment is investigated in this study. The SiNWs obtained from silicon bulk wafers are <111> surface-oriented and their doping concentrations are 1021 and 1017 cm−3 for the n- and p-type SiNWs, respectively. After the back-gate SiNWFETs were subjected to oxygen plasma treatment, the magnitude of the drain current of the n-type SiNWs was decreased, whereas that of the p-type SiNWs was increased, while the gate-dependent characteristics of both of types of SiNWs were improved. The changes in the electrical characteristics are due to the adsorption of oxygen ions on the surface of the SiNWs. To verify the effect of the oxygen ions, the SiNWFETs were kept in a vacuum for 24 h whereupon their electrical characteristics tended to revert to their inherent state.  相似文献   

19.
The structural evolution with pressure of six perovskites in the system La1−xNdxGaO3 with x=0.00, 0.06, 0.12, 0.20, 0.62 and 1.00 have been determined by single-crystal diffraction. At room pressure, all six samples have Pbnm symmetry. The room-pressure bulk moduli vary only slightly with composition, between K0T=169(4) and 177(2) GPa, with . As pressure is increased there is significant compression of the octahedral Ga–O bonds, the tilts of the GaO6 octahedra decrease and the structures evolve towards higher symmetry. At room conditions the average Ga–O bond length increases with increasing compositional parameter x. However, the GaO6 become stiffer with increasing x; the Ga–O bonds thus become stiffer as they become longer. Bond strengths in the octahedra in perovskites are therefore not a simple function of bond lengths but depend also upon the extra-framework cation.Phase transitions to R-3c symmetry occur at 2.2 GPa in end-member LaGaO3, at 5.5 GPa in the x=0.06 sample, at 7.8 GPa for x=0.12, and at 12 GPa for x=0.20. No evidence of the transition in the x=0.62 or 1.00 samples was found by X-ray diffraction to 9.4 or 8.0 GPa, respectively, or by Raman measurements of NdGaO3 up to 16 GPa. The transition pressure therefore increases with increasing Nd content (increasing x) at approximately 0.45 GPa per 0.01 increment in x, at least up to x=0.20. Compression of the R-3c phase of LaGaO3 above the transition results in no significant changes in the tilt angle of the octahedra. The structural behavior of all six samples at high pressures is the result of the GaO6 octahedra being softer than the extra-framework (La, Nd)O12 site. The results therefore demonstrate that the evolution of solid-solution perovskites at high pressures follow the same general principles recently elucidated for end-member compositions.  相似文献   

20.
Silver nanoparticles were synthesized by UV irradiation of [Ag(NH3)2]+ aqueous solution using poly(N-vinyl-2-pyrrolidone) (PVP) as both reducing and stabilizing agents. The formation of silver nanoparticles was confirmed from the appearance of surface plasmon absorption maxima around 420 nm. It was found that the formation rate of silver nanoparticles from Ag2O was much quicker than that from AgNO3, and the absorption intensity increased with PVP concentration as well as irradiation time. The maximum absorption wavelength (λmax) was blue shift with increasing PVP content until 8 times concentration of [Ag(NH3)2]+ (wt%). The transmission electron microscopy (TEM) showed the resultant particles were 4–6 nm in size, monodisperse and uniform particle size distribution. X-ray diffraction (XRD) demonstrated that the colloidal nanoparticles were the pure silver. In addition, the silver nanoparticles prepared by the method were stable in aqueous solution over a period of 6 months at room temperature (25 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号