首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azulene is a non-alternant non-benzenoid aromatic system, and in turn, it possesses unusual photophysical properties. Azulene-based conjugated systems have received increasing interest in recent years as optoelectronic materials. Despite the routes available for the preparation of substituted azulene derivatives, there remain few methods that allow regioselective substitution on the seven-membered ring of azulenes due to the subtle reactivity difference among the various positions. This report explores the reactivity of substituted tropolones as the azulene precursors and also provides a new method to create 5-substituted azulenes. The reaction of cyanoacetate enolate with unsubstituted 2-methoxytropone affords azulene through the attack of the nucleophile on the C-2 center (normal pathway). We have observed that 3-substituted 2-methoxytropones undergo steric-guided nucleophilic addition at the C-7 center (abnormal pathway) to afford 5-substituted azulene derivatives. Based on this observation and DFT calculation, a new synthetic strategy is devised for the regioselective synthesis of 5-substituted multifunctional azulenes, which cannot be accessed by any other method.  相似文献   

2.
Incorporation of a non-hexagonal ring into a nanographene framework can lead to new electronic properties. During the attempted synthesis of naphthalene-bridged double [6]helicene and heptagon-containing nanographene by the Scholl reaction, an unexpected azulene-embedded nanographene and its triflyloxylated product were obtained, as confirmed by X-ray crystallographic analysis and 2D NMR spectroscopy. A 5/7/7/5 ring-fused substructure containing two formal azulene units is formed, but only one of them shows an azulene-like electronic structure. The formation of this unique structure is explained by arenium ion mediated 1,2-phenyl migration and a naphthalene to azulene rearrangement reaction according to an in-silico study. This report represents the first experimental example of the thermodynamically unfavorable naphthalene to azulene rearrangement and may lead to new azulene-based molecular materials.  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) that contain both five‐ and seven‐membered rings are rare, and those where these rings are annulated to each other and build azulene units have, to date, mainly been generated in minute amounts on surfaces. Herein, a rational approach to synthesize soluble contorted PAHs containing two embedded azulene units in the bulk is presented. By stepwise detachment of tert‐butyl groups, a series of three azulene embedded PAHs with different degrees of contortion has been made to study the impact of curvature on aromaticity and conjugation. Furthermore, the azulene PAHs showed high fluorescence quantum yields in the NIR regime.  相似文献   

4.
Large polycyclic aromatic hydrocarbons (PAHs) containing pentagons represent an important class of compounds that are considered to be superior materials in future nano-electronic applications. From this perspective, the development of synthetic approaches to large PAHs and nanographenes (NGs) is a matter of great importance. In this context indenoannulation appears to be the most practical way to introduce pentagons into NGs. Here we report that alumina-mediated C−F bond activation is an attractive tool for the synthesis of non-alternant NGs bearing several pentagons. The unique nature of the reaction leads to a rather counter-intuitive outcome and allows considering each previous aryl–aryl coupling as a promoter of the following one, despite the continuous increase in the strain energy. Thus, the presented strategy combines both facile synthesis and significant yields for large nonalternant PAHs and NGs.  相似文献   

5.
Three unprecedented helical nanographenes ( 1 , 2 , and 3 ) containing an azulene unit are synthesized. The resultant helical structures are unambiguously confirmed by X-ray crystallographic analysis. The embedded azulene unit in 2 possesses a record-high twisting degree (16.1°) as a result of the contiguous steric repulsion at the helical inner rim. Structural analysis in combination with theoretical calculations reveals that these helical nanographenes manifest a global aromatic structure, while the inner azulene unit exhibits weak antiaromatic character. Furthermore, UV/Vis-spectral measurements reveal that superhelicenes 2 and 3 possess narrow energy gaps ( 2 : 1.88 eV; 3 : 2.03 eV), as corroborated by cyclic voltammetry and supported by density functional theory (DFT) calculations. The stable oxidized and reduced states of 2 and 3 are characterized by in-situ EPR/Vis–NIR spectroelectrochemistry. Our study provides a novel synthetic strategy for helical nanographenes containing azulene units as well as their associated structures and physical properties.  相似文献   

6.
Linear polycyclic systems are promising candidates in the area of organic electronics. Herein, we present the syntheses of three azulene-indole (AzIn) fused polycyclic heteroaromatics (PHAs), AzIn - 1 , AzIn - 2 and DGAzIn , which have nitrogens and nonhexagonal rings simultaneously. The chemical structures, optical and electrochemical properties of three AzIn-based PHAs have been investigated, as well as their protonation behaviors with trifluoroacetic acid (TFA). All three AzIn-based PHAs exhibit narrow optical band gaps with moderate to good air stability, anti-Kasha emission and reversible stimuli-responsiveness. Furthermore, these straightforward and simple synthetic routes would provide a new entry for constructing novel azulene-embedded π-conjugates, especially for the seven-membered ring of azulene unit, wherein the regioselective transformation is not well developed.  相似文献   

7.
Design and synthesis of new organic functional materials with improved performance or novel properties are of great importance in the field of optoelectronics. Azulene, as a non-alternant aromatic hydrocarbon, has attracted rising attention in the last few years. Different from most common aromatic hydrocarbons, azulene has unique characteristics, including large dipole moment, small gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). However, the design and synthesis of azulene-based functional materials are still facing several challenges. This review focuses on the recent development of organic functional materials employing azulene unit. The synthesis of various functionalized azulene derivatives is summarized and their applications in optoelectronics are discussed, with particular attention to the fields including nonlinear optics (NLO), organic field-effect transistors (OFETs), solar cells, and molecular devices.  相似文献   

8.
Three unprecedented helical nanographenes ( 1 , 2 , and 3 ) containing an azulene unit are synthesized. The resultant helical structures are unambiguously confirmed by X‐ray crystallographic analysis. The embedded azulene unit in 2 possesses a record‐high twisting degree (16.1°) as a result of the contiguous steric repulsion at the helical inner rim. Structural analysis in combination with theoretical calculations reveals that these helical nanographenes manifest a global aromatic structure, while the inner azulene unit exhibits weak antiaromatic character. Furthermore, UV/Vis‐spectral measurements reveal that superhelicenes 2 and 3 possess narrow energy gaps ( 2 : 1.88 eV; 3 : 2.03 eV), as corroborated by cyclic voltammetry and supported by density functional theory (DFT) calculations. The stable oxidized and reduced states of 2 and 3 are characterized by in‐situ EPR/Vis–NIR spectroelectrochemistry. Our study provides a novel synthetic strategy for helical nanographenes containing azulene units as well as their associated structures and physical properties.  相似文献   

9.
The alternant molecular orbital method (AMO ) is more efficient if the molecular orbitals are chosen in an optimal way. A method is given of how to determine the most effective pairing scheme and how to choose the starting molecular orbitals. Applications to non-alternant systems (fulvene and azulene) show that one can achieve substantial improvement in the energy by determining the best MO's .  相似文献   

10.
By combination of two special structural units,a boron-nitrogen-fused polycyclic aromatic hydrocarbon and azulene with strong in-tramolecular dipoles,a novel BN...  相似文献   

11.
The polyunsaturated [10]cyclophane 4 was synthesized from 1,4-diacetylbenzene by a four-step sequence involving the modified Yasunami azulene synthesis, introduction of two butenone units, and a subsequent McMurry coupling reaction. The crystal structures of 4 and the synthetic intermediate 8 was determined by X-ray crystallographic analysis and the results reveal that (1) the benzene ring of 4 is distorted as a boat form with relatively small bending angles and (2) the azulene rings of 8 show large out-of-plane deformation along the short azulene molecular axis.  相似文献   

12.
Azulene, a unique isomer of naphthalene, has received much interest from researchers in different fields due to its unusual chemical structure with a negatively charged 5‐membered ring fused with a positively charged 7‐membered ring. In particular, incorporation of azulene into polymers has led to many interesting properties. This minireview covers functionalization methods of azulene at its various positions of 5‐ and 7‐membered rings to form azulene derivatives including azulene monomers, and gives an overview of a wide range of azulene‐containing polymers including poly(1,3‐azulene), azulene‐based copolymers with connectivity at 1,3‐positions of the 5‐membered ring, or 4,7‐positions of the 7‐membered ring, as well as copolymers with azulene units as side chains. Their chemical and physical properties together with applications of azulene‐containing polymers have also been summarized.  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs) have found strong interest for their electronic properties and as model systems for graphene. While PAHs have been studied intensively as single units, here PAHs were constructed in ladder-type arrangements using cross-conjugated fulvalene and dithiafulvalene motifs as connecting units and moving forward a convenient synthetic approach for dimerizing (thio)ketones into olefins by the action of Lawesson's reagent. Some of the PAHs can also be regarded as “super-extended” tetrathiafulvalenes (TTFs) with some of the largest cores ever explored, being multi-redox systems that exhibit both reversible oxidations and reductions. Concomitant absorption redshifts were observed when expanding the ladder-type structures from one to two to three indenofluorene units, and optical and electrochemical HOMO-LUMO gaps were found to correlate linearly. Various conformations (and solid-state packing arrangements) were studied by X-ray crystallography and computations.  相似文献   

14.
Azulene is a promising candidate for constructing optoelectronic materials. An effective strategy is presented to obtain high‐performance conjugated polymers by incorporating 2,6‐connected azulene units into the polymeric backbone, and two conjugated copolymers P(TBAzDI‐TPD) and P(TBAzDI‐TFB) were designed and synthesized based on this strategy. They are the first two examples for 2,6‐connected azulene‐based conjugated polymers and exhibit unipolar n‐type transistor performance with an electron mobility of up to 0.42 cm2 V?1 s?1, which is among the highest values for n‐type polymeric semiconductors in bottom‐gate top‐contact organic field‐effect transistors. Preliminary all‐polymer solar cell devices with P(TBAzDI‐TPD) as the electron acceptor and PTB7‐Th as the electron donor display a power conversion efficiency of 1.82 %.  相似文献   

15.
Studies of the emission spectra of four Co(III) cobinamides (diaquo-, aquohydroxo-, dihydroxo- and dicyano-) show (1) that the excited states corresponding to the alphabeta and epsilon absorption bands behave like the S(1) and S(2) levels in the non-alternant hydrocarbon azulene (with emission from S(2)> S(1) in violation of Kasha's rule) and (2) that the excited states include a TICT (twisted intramolecular charge transfer) mechanism, as in the simpler cyanines, but where the TICT state gives rise to dual fluorescence instead of cis-trans isomerisation. Combined with the previously reported dual fluorescence from the S(1) level in synthetic metal corrinoids and in the naturally-occurring metal-free corrin, this provides evidence that the existence of an additional (metastable) ground state with a significantly different vibronic splitting and nuclear configuration is an intrinsic property of the basic corrin ligand (irrespective of the nature of the side-chains and the metal ion or even the absence of a metal) which distinguishes it from porphyrin. The occurrence of hysteresis (and its associated oscillations) in redox reactions of the cobinamides involving both the Co(III/II) and Co(II/I) couples indicates that the corrin ligand also has an intrinsic ability to exist in different conformations or "allosteric" forms with differing redox potential, which further distinguishes it from the porphyrin ligand. Possible links between the existence of an additional metastable ground state and of allosteric changes and the likely reasons for the selection of corrin over a porphyrin for the vitamin B(12)-dependent enzymes are discussed.  相似文献   

16.
Incorporation of a non‐hexagonal ring into a nanographene framework can lead to new electronic properties. During the attempted synthesis of naphthalene‐bridged double [6]helicene and heptagon‐containing nanographene by the Scholl reaction, an unexpected azulene‐embedded nanographene and its triflyloxylated product were obtained, as confirmed by X‐ray crystallographic analysis and 2D NMR spectroscopy. A 5/7/7/5 ring‐fused substructure containing two formal azulene units is formed, but only one of them shows an azulene‐like electronic structure. The formation of this unique structure is explained by arenium ion mediated 1,2‐phenyl migration and a naphthalene to azulene rearrangement reaction according to an in‐silico study. This report represents the first experimental example of the thermodynamically unfavorable naphthalene to azulene rearrangement and may lead to new azulene‐based molecular materials.  相似文献   

17.
[structure: see text] A synthetic strategy promising the establishment of a new star-shaped and linear polycyclic aromatic hydrocarbons (PAHs) family with distinct molecular topologies has been developed. The Sonogashira reaction between the iodide derivatives 2a-e and phenylacetylene catalyzed with Pd(0) affords 3a-e in high yields. The Diels-Alder and decarbonylation reactions between 3a-e and tetraphenylcyclophentadiene following the oxidation by FeCl(3) produce the star-shaped and linear PAHs 5a-e containing a five-membered ring. The structural analysis and the optical properties of all new compounds are performed by a combination of MALDI-TOF mass spectrometry, UV-vis, and fluorescence spectrometry. The electronic and photophysical properties are studied by orthogonal comparisons of the absorption and fluorescence spectra in THF solutions, which not only give insight into the interactions among aromatic submoieties in each molecule and the effects of meta-conjugation and para-conjugation on electronic delocalization, but also indicate effective conjugation length variations from oligophenylacetylenes 3a-e to oligophenylene dendrimers 4a-e and PAHs 5a-e. The star-shaped 5c exhibits the highest aggregation in excited states compared with the other four hexa-peri-hexabenzocoronene (HBC) derivatives.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) represent an emerging class of π-conjugated molecules in the area of optoelectronic devices and materials. Unprecedented synthetic routes to various PAHs from simple phenol derivatives by a palladium-catalyzed annulative dimerization of phenylene triflate through twofold inter- and intramolecular C−H activation have been established. The initially formed partially fused PAHs can be smoothly transformed into a variety of fully fused PAHs by the Scholl reaction. Furthermore, the reactions of phenanthrene-substituted aryl triflates proceeded regioselectively. The findings inspired the development of a rapid and efficient synthesis of polybenzoacene derivatives. This study not only allows transformation of phenyl triflates, but also discloses a new retrosynthetic strategy towards PAHs, especially polybenzoacenes.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) are attractive synthetic building blocks for more complex conjugated nanocarbons, but their use for this purpose requires appreciable quantities of a PAH with reactive functional groups. Despite tremendous recent advances, most synthetic methods cannot satisfy these demands. Here we present a general and scalable [2 + 2 + n] (n = 1 or 2) cycloaddition strategy to access PAHs that are decorated with synthetically versatile alkynyl groups and its application to seven structurally diverse PAH ring systems (thirteen new alkynylated PAHs in total). The critical discovery is the site-selectivity of an Ir-catalyzed [2 + 2 + 2] cycloaddition, which preferentially cyclizes tethered diyne units with preservation of other (peripheral) alkynyl groups. The potential for generalization of the site-selectivity to other [2 + 2 + n] reactions is demonstrated by identification of a Cp2Zr-mediated [2 + 2 + 1]/metallacycle transfer sequence for synthesis of an alkynylated, selenophene-annulated PAH. The new PAHs are excellent synthons for macrocyclic conjugated nanocarbons. As a proof of concept, four were subjected to alkyne metathesis catalysis to afford large, PAH-containing arylene ethylene macrocycles, which possess a range of cavity sizes reaching well into the nanometer regime. Notably, these high-yielding macrocyclizations establish that synthetically convenient pentynyl groups can be effective for metathesis since the 4-octyne byproduct is sequestered by 5 Å MS. Most importantly, this work is a demonstration of how site-selective reactions can be harnessed to rapidly build up structural complexity in a practical, scalable fashion.

An orthogonal [2 + 2 + n] cycloaddition/alkyne metathesis reaction sequence enables streamlined access to conjugated macrocyclic nanocarbons.  相似文献   

20.
A "2 + 2" strategy for synthesizing adj-dicarbaporphyrinoid systems has been developed. In a model study, an azulenylmethylpyrrole dialdehyde was condensed with a dipyrrylmethane in the presence of HCl, followed by oxidation with ferric chloride, to give a modest yield of an azuliporphyrin. Fulvene aldehydes were prepared by reacting an indene-derived enamine with azulene aldehydes in the presence of Bu(2)BOTf, and azulene dialdehydes similarly reacted to give fulvene dialdehydes. The dialdehydes were condensed with dipyrrylmethanes in TFA/dichloromethane to afford good to excellent yields of dicarbaporphyrinoids with adjacent indene and azulene subunits. These 22-carbaazuliporphyrins exhibited significant diatropic character, and this property was magnified upon protonation. These characteristics are attributed to tropylium-containing resonance contributors that possess 18π electron delocalization pathways. Protonation studies demonstrated that C-protonation readily occurred at the interior indene carbon, but deuterium exchange also occurred at the internal azulene CH as well as at the meso-positions with TFA-d. Reaction of a carbaazuliporphyrin with silver(I) acetate in methanol or ethanol solutions also gave unusual nonaromatic dialkoxy derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号