首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文采用溶胶-凝胶前驱体喷雾干燥法制备了Na2Ti3O7@MWCNTs(多壁碳纳米管)复合材料,用于钠离子电池的负极.这种方法得到的Na2Ti3O7球形壳层包裹纳米Na2Ti3O7@MWCNTs复合材料的结构与用固相烧结法、简单溶胶-凝胶法制备的Na2Ti3O7-MWCNTs复合材料在电化学性能上相比,具有倍率性能好、小电流下50次循环后比容量衰减小等优势.  相似文献   

2.
Layered oxide cathodes have demonstrated great potential for potassium-ion batteries (PIBs) on account of high reversible capacity, appropriate diffusion paths, and low cost. However, their electrochemical performance in PIBs is generally worse than that in lithium-ion batteries due to large structural changes and deformations during charging and discharging. To improve their potassium storage performance, a series of strategies have been developed in recent studies. In this review, we summarize the latest advancements in layered oxide cathodes for PIBs through different crystal regulation strategies, including transition metal layer doping, potassium content optimization, oxygen partial substitution, functional morphology construction and air stability improvement. Meanwhile, the relationship between the electrochemical properties and structural evolution of these modified cathodes is also investigated. In addition, the challenges and prospects of these layered oxide cathodes in PIBs are analyzed in detail, providing constructive insights for future applications of PIBs.  相似文献   

3.
Sodium-ion batteries (SIBs) have attracted much attention due to their abundance, easy accessibility, and low cost. All of these advantages make them potential candidates for large-scale energy storage. The P2-type layered transition-metal oxides (NaxTMO2; TM=Mn, Co, Ni, Ti, Fe, V, Cr, and a mixture of multiple elements) exhibit good Na+ ion conductivity and structural stability, which make them an excellent choice for the cathode materials of SIBs. Herein, the structural evolution, anionic redox reaction, some challenges, and recent progress of NaxTMO2 cathodes for SIBs are reviewed and summarized. Moreover, a detailed understanding of the relationship of chemical components, structures, phase compositions, and electrochemical performance is presented. This Review aims to provide a reference for the development of P2-type layered transition-metal oxide cathode materials for SIBs.  相似文献   

4.
《结构化学》2020,39(8):1363-1371
Poor cycling stability, as a long-standing issue, has greatly hindered the commercial application of Li-rich layered oxide cathodes in high-energy-density Li-ion batteries. NiO-type rock-salt phase is commonly considered electrochemically inert but stable. Herein, an ultrathin(Li_xTM_(1-x))O rock-salt shell was in situ constructed at the particle surface during the synthesis of Li-rich layered oxide cathodes through a unique soft chemical quenching method. Comprehensive structural/chemical analysis reveals that, it not only inherits the chemical stability of traditional NiO-type rock-salt phase, but also facilitates Li+ diffusion due to the co-occupancy of Li~+ and TM cations. Such a bifunctional shell could efficiently prevent TM dissolution and oxygen evolution during the long-term cycling, eventually leading to the enhanced cycling stability for Li-rich layered oxides(92.7% of capacity retention after 200 cycles at 0.5 C). It provides new guidance to design and synthesize new Li-rich layered oxides with the excellent cycling stability through utilizing some electrochemically-inert phases.  相似文献   

5.
The theoretical capacity and the vacancy concentration of metal-ion-doped layered compounds such as LiCoO2, LiNiO2, and LiMnO2, acting as cathodes in high-voltage lithium-ion batteries are calculated. The capacity shows strong dependence on valency of the doped metal ion and vacancy concentration. Experimental verification carried out to check the validity of the proposed equation for aluminium substitution into the potential layered materials shows good agreement between the experimental and theoretical capacity values. The vacancy concentration values of doped layered compounds have been found to be high when compared with that of the doped spinel compounds.  相似文献   

6.
层状富锂材料具有超过250 mAh∙g−1的高可逆比容量,被认为是下一代高比能锂离子电池最具商业化前景的正极材料之一。然而,层状富锂材料在实际应用之前仍需解决诸多挑战,如高电压氧释放、层状到岩盐相的结构变化、过渡金属离子迁移等结构劣化,并由此带来了较低的初始库伦效率、电压/容量的衰减以及循环寿命的不足。针对以上问题,进行层状富锂材料改性无疑是一种行之有效的方法。本综述全面介绍了层状富锂材料的结构、组分以及电化学性能,在此基础上对材料改性策略进行了系统阐述,详细介绍了体相掺杂、表面包覆、缺陷设计、离子交换和微结构调控等一系列改性策略的现状以及发展趋势,最终提出了高容量和长循环层状富锂材料和高比能锂离子电池的设计思路。  相似文献   

7.
《中国化学快报》2020,31(9):2167-2176
As one of the most promising secondary batteries in large-scale energy storage, sodium ion batteries (SIBs) have attracted wide attention due to the abundant raw materials and low cost. Layered transition metal oxides are one kind of popular cathode material candidates because of its easy synthesis and large theoretical specific capacity. Yet, the most common P2 and O3 phases show distinct structural characteristics respectively. O3 phase can serve as a sodium reservoir, but it usually suffers from serious phase transition and sluggish kinetics. For the P2 phase, it allows the fast sodium ion migration in the bulk and the structure can maintain stable, but it is lack of sodium, showing a great negative effect on Coulombic efficiency in full cell. Thus, single phase structure almost cannot achieve satisfied comprehensive sodium storage performances. Under these circumstances, exploiting novel multiphase cathodes showing synergetic effect may give solution to these problems. In this review, we summarize the recent development of multiphase layered transition metal oxide cathodes of SIBs, analyze the mechanism and prospect the future potential research directions.  相似文献   

8.
采用不同方法制备出单一或掺杂Cu2+离子的钙锰矿, 分析了其隧道或者骨架结构中掺杂Cu2+离子的合成条件, 并应用粉末微电极考察了其电化学活性和稳定性. 单一或骨架中掺杂Cu2+离子的钙锰矿可在常压回流条件下制备; 隧道中掺杂Cu2+离子的钙锰矿须经高温高压热液反应合成, 且反应温度是影响产物纯度的主导因素. 钙锰矿在高pH值溶液中电化学稳定性较好; 骨架中掺杂Cu2+离子可提高钙锰矿的电化学活性和稳定性, 而隧道中掺杂Cu2+离子的钙锰矿电化学活性较低; 结合循环伏安法进一步证明了后者掺杂的Cu2+离子主要位于钙锰矿的隧道中.  相似文献   

9.
A detailed structural and electrochemical study of the ion exchanged Li(2)Ti(6)O(13) titanate as a new anode for Li-ion batteries is presented. Subtle structural differences between the parent Na(2)Ti(6)O(13), where Na is in an eightfold coordinated site, and the Li-derivative, where Li is fourfold coordinated, determine important differences in the electrochemical behaviour. While the Li insertion in Na(2)Ti(6)O(13) proceeds reversibly the reaction of lithium with Li(2)Ti(6)O(13) is accompanied by an irreversible phase transformation after the first discharge. Interestingly, this new phase undergoes reversible Li insertion reaction developing a capacity of 170 mAh g(-1) at an average voltage of 1.7 V vs. Li(+)/Li. Compared with other titanates this result is promising to develop a new anode material for lithium ion rechargeable batteries. Neutron powder diffraction revealed that Na in Na(2)Ti(6)O(13) and Li in Li(2)Ti(6)O(13) obtained by Na/Li ion exchange at 325 °C occupy different tunnel sites within the basically same (Ti(6)O(13))(2-) framework. On the other hand, electrochemical performance of Li(2)Ti(6)O(13) itself and the phase released after the first full discharge is strongly affected by the synthesis temperature. For example, heating Li(2)Ti(6)O(13) at 350 °C produces a drastic decrease of the reversible capacity of the phase obtained after full discharge, from 170 mAh g(-1) to ca. 90 mAh g(-1). This latter value has been reported for Li(2)Ti(6)O(13) prepared by ion exchange at higher temperature.  相似文献   

10.
Li‐ and Mn‐rich layered oxides are among the most promising cathode materials for Li‐ion batteries with high theoretical energy density. Its practical application is, however, hampered by the capacity and voltage fade after long cycling. Herein, a finite difference method for near‐edge structure (FDMNES) code was combined with in situ X‐ray absorption spectroscopy (XAS) and transmission electron microscopy/electron energy loss spectroscopy (TEM/EELS) to investigate the evolution of transition metals (TMs) in fresh and heavily cycled electrodes. Theoretical modeling reveals a recurring partially reversible LiMn2O4‐like sub‐nanodomain formation/dissolution process during each charge/discharge, which accumulates gradually and accounts for the Mn phase transition. From the modeling of spectra and maps of the valence state over large regions of the cathodes, it was found that the phase change is size‐dependent. After prolonged cycling, the TMs displayed different levels of inactivity.  相似文献   

11.
P2‐type layered oxides suffer from an ordered Na+/vacancy arrangement and P2→O2/OP4 phase transitions, leading them to exhibit multiple voltage plateaus upon Na+ extraction/insertion. The deficient sodium in the P2‐type cathode easily induces the bad structural stability at deep desodiation states and limited reversible capacity during Na+ de/insertion. These drawbacks cause poor rate capability and fast capacity decay in most P2‐type layered oxides. To address these challenges, a novel high sodium content (0.85) and plateau‐free P2‐type cathode‐Na0.85Li0.12Ni0.22Mn0.66O2 (P2‐NLNMO) was developed. The complete solid‐solution reaction over a wide voltage range ensures both fast Na+ mobility (10?11 to 10?10 cm2 s?1) and small volume variation (1.7 %). The high sodium content P2‐NLNMO exhibits a higher reversible capacity of 123.4 mA h g?1, superior rate capability of 79.3 mA h g?1 at 20 C, and 85.4 % capacity retention after 500 cycles at 5 C. The sufficient Na and complete solid‐solution reaction are critical to realizing high‐performance P2‐type cathodes for sodium‐ion batteries.  相似文献   

12.
We report on the electrochemical properties of layered manganese oxides, with and without cobalt substituents, as cathodes in sodium ion batteries. We fabricated sub-micrometre-sized particles of Na0.7MnO2?+?z and Na0.7Co0.11Mn0.89O2?+?z via combustion synthesis. X-ray diffraction revealed the same layered hexagonal P2-type bronze structure with high crystallinity for both materials. Potentiostatic and galvanostatic charge/discharge cycles in the range 1.5–3.8 V vs. Na | Na+ were performed to identify potential-dependent phase transitions, capacity, and capacity retention. After charging to 3.8 V, both materials had an initial discharge capacity of 138 mA?h?g?1 at a rate of 0.3 C. For the 20th cycle, those values reduced to 75 and 92 mA?h?g?1 for Co-free and Co-doped samples, respectively. Our findings indicate that earlier works probably underestimated the potential of (doped) P2-type Na0.7MnO2?+?z as cathode material for sodium ion batteries in terms of capacity and cycle stability. Apart from doping, a simple optimization parameter seems to be the particle size of the active material.  相似文献   

13.
The NaNiO2 structure is a promising cathode material for sodium ion batteries due to its reasonably high capacity (~120 mAh/g), environmental friendliness and the low cost of required raw materials. First-principles calculations have been carried out to study the Ti ions doped NaNi1-xTixO2 (x = 0, 0.037, 0.056, 0.083 and 0.167) phases. Results show that Ti doping can lead to a higher average intercalation voltage and improved electronic conductivity. The optimized NaNi0.917Ti0.083O2 sample can effectively suppress the volume change of the unit cell by 4% upon full desodiation and an increased ion mobility was found in this sample by nudged elastic band calculation. We suggest that the NaNi0.917Ti0.083O2 cathode could be a promising candidate for Na-ion batteries.  相似文献   

14.
层状LiMnO_2正极材料的研究进展   总被引:1,自引:0,他引:1  
层状LiMnO2 化合物的研究是目前锂离子电池正极材料锂锰氧化物研究工作的新热点 ,本文综述了近年来国内外LiMnO2 化合物的研究进展 ,主要阐述了具有层状和扭曲层状结构的m LiMnO2和o LiMnO2 的结构、电性能、合成和改性方法等方面的研究状况 ,重点介绍了离子交换法合成层状LiMnO2 的原因和机理。探索新的合成方法和掺杂其它金属离子改性以提高循环性能是今后LiMnO2 的研究趋势。  相似文献   

15.
Cu/Sn/C composite nanofibers were synthesized by using dual‐nozzle electrospinning and subsequent carbonization. The composite nanofibers are a homogeneous amorphous matrix comprised of Cu, Sn, and C with a trace of crystalline Sn. The Li‐ and Na‐ion storage performance of the Cu/Sn/C fiber electrodes were investigated by using cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. Excellent, stable cycling performance indicates capacities of 490 and 220 mA h g?1 for Li‐ion (600 cycles) and Na‐ion (200 cycles) batteries, respectively. This is a significant improvement over other reported Sn/C nanocomposite devices. These superior electrochemical properties could be attributed to the advantages of incorporating one‐dimensional nanostructures into the electrodes, such as short electron diffusion lengths, large specific surface areas, ideal homogeneous structures for buffering volume changes, and better electronic conductivity that results from the amorphous copper and carbon matrix.  相似文献   

16.
近年来,由于锂资源逐渐紧缺而导致其成本增加,锂离子电池发展受到了限制. 作为一个有潜力的替代者,有着相似电化学机制且成本较低的钠离子电池则发展迅速. 但由于钠离子与锂离子相较有着更大半径,在钠离子脱嵌过程中,对大多数电极材料的晶体结构破坏严重. 因此,开发新型电极材料对钠离子电池的进一步发展尤为重要. 其中,层状钒氧化物作为正极材料被广泛研究. 在这项工作中,作者基于钒氧化物,引入钼元素并与碳复合,首次设计合成了一种新型的碳复合钼掺杂的钒氧化物纳米线电极材料,并获得了优良的电化学性能(在50 mA•g-1的电流密度下,最高放电比容量达135.9 mAh•g-1,并在循环75次后仍有82.6mAh•g-1的可逆容量,容量保持率高达71.8%;在1000mA•g-1的高电流密度下循环并回到50mA•g-1后,可逆放电比容量仍能回复至111.5mAh•g-1). 本工作的研究结果证明,这种具有超大层间距的新型碳复合钼掺杂的钒氧化物纳米线是一种非常有潜力的储钠材料,并且我们的工作为钠离子电池的进一步发展提供了一定的理论基础.  相似文献   

17.
《中国化学快报》2023,34(6):107718
The Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) layered cathodes endow Li-ion batteries (LIBs) with high energy density. However, they usually suffer from limited ion-diffusion and structural instability during cycling. Although doping strategy can effectively alleviate these issues, the coupling effects of multi-element doping and the corresponding performance enhancement mechanism have been yet unclear. Here, we report a Zr/Ti dual-doped NCM811 cathode material (ZT-NCM811), in which Zr-ion is doped into both transition metal (TM) layers and lithium layers and Ti-ion is only distributed in TM layers. The dual-doping can effectively enhance crystal structure stability via inhibiting the lattice collapse along c-axis and decreasing the Li/Ni disorder. Meantime, the lattice oxygen escape is also greatly reduced due to the presence of stronger Zr-O and Ti-O bonds, further mitigating the crystal surface parasitic reactions with electrolyte. The resultant ZT-NCM811 exhibits high specific capacity of 124 mAh/g at even 10 C, much higher than undoped and single-doped NCM811, and a retention of 98.8% at 1 C after 100 cycles. The assembled ZT-NCM811/graphite full cell also delivers superior battery performances and durability.  相似文献   

18.
王京玥  王睿  王诗琦  王立帆  詹纯 《电化学》2022,28(8):2112131
高镍层状正极材料因其比容量高进而满足电动汽车的续航要求,是锂离子电池中占主导地位的正极材料之一。通常,商业化的高镍层状氧化物是由共沉淀前驱体合成的,而在共沉淀过程中需要对温度、 pH、 搅拌速率等条件的精确控制,以确保镍、钴和锰等阳离子的原子级混合。本文采用了简单的一步固相法成功合成了超高镍含量的层状氧化物材料。通过使用与目标产物具有相似层状结构的前驱体氢氧化镍,成功合成了LiNiO2和LiNixCoyO2 (x = 0.85, 0.9, 0.95; x + y = 1),其电化学性能可与共沉淀前驱体制备的高镍材料相媲美。通过XRD和XPS测试证实了Co掺杂到LiNiO2中,并抑制了高镍氧化物中的锂镍混排。掺杂剂Co在提高高镍材料的放电容量、倍率性能和循环性能方面具有明显的优势。一步固相法为未来制备下一代高性能超高镍锂离子正极材料提供了一种简单有效制备方法。  相似文献   

19.
Li- and Mn-rich layered oxides are among the most promising cathode materials for Li-ion batteries with high theoretical energy density. Its practical application is, however, hampered by the capacity and voltage fade after long cycling. Herein, a finite difference method for near-edge structure (FDMNES) code was combined with in situ X-ray absorption spectroscopy (XAS) and transmission electron microscopy/electron energy loss spectroscopy (TEM/EELS) to investigate the evolution of transition metals (TMs) in fresh and heavily cycled electrodes. Theoretical modeling reveals a recurring partially reversible LiMn2O4-like sub-nanodomain formation/dissolution process during each charge/discharge, which accumulates gradually and accounts for the Mn phase transition. From the modeling of spectra and maps of the valence state over large regions of the cathodes, it was found that the phase change is size-dependent. After prolonged cycling, the TMs displayed different levels of inactivity.  相似文献   

20.
Compared to lithium ions, the fast redox intercalation of large‐radius sodium or potassium ions into a solid lattice in non‐aqueous electrolytes is an elusive goal. Herein, by regulating the interlayer structure of stacked titania sheets through weakened layer‐to‐layer interactions and a robustly pillared gallery space, the two‐dimensional channel between neighboring sheets was completely open to guest intercalation, allowing fast intercalation that was practically irrespective of the carrier‐ion sizes. Regardless of employing regular Li or large‐radius Na and K ions, the material manifested zero strain‐like behavior with no significant change in both host structure and interlayer space, enabling comparable capacities for all tested ions along with excellent rate behaviors and extraordinarily long lifetimes, even with 80‐μm‐thick electrodes. The result highlights the importance of interlayer structural features for unlocking the electrochemical activity of a layered material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号