首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 756 毫秒
1.
The aim of the study was to develop an LC method for honeybee venom analysis, using cytochrome c as an internal standard. The SynChropack C8 6.5 μm, 4.6 × 100 mm column was applied. The bee venom was separated by linear gradient 5–80% B at 30 min (eluent A—0.1% TFA in water, eluent B—0.1% TFA in acetonitrile:water (80:20)). The flow rate of mobile phase was maintained at 1 mL min?1, injection volume: 40 μL, separation temperature: 25 °C. The analysis was monitored at 220 nm. Several honeybee venom constituents were separated and the content of four of them (apamine, mast cell degranulating peptide, phospholipase A2 and melittin) were determined. By applying this methodology differences in chemical composition of honeybee venom were evaluated. In order to confirm the data obtained, the following steps and parameters were taken into account for the validation of the method: selectivity, precision (injection repeatability, analysis repeatability), accuracy (recovery), linearity and operating range, limit of detection and limit of quantitation. All steps of validation proved that the developed analytical procedure was suitable for its intended purpose (standardization). Due to its simplicity, the developed method can be easily automated and incorporated into routine operations both in the bee venom identification, quality control and assay tests.  相似文献   

2.
The aim of the study was to develop an LC method for honeybee venom analysis, using cytochrome c as an internal standard. The SynChropack C8 6.5 μm, 4.6 × 100 mm column was applied. The bee venom was separated by linear gradient 5–80% B at 30 min (eluent A—0.1% TFA in water, eluent B—0.1% TFA in acetonitrile:water (80:20)). The flow rate of mobile phase was maintained at 1 mL min−1, injection volume: 40 μL, separation temperature: 25 °C. The analysis was monitored at 220 nm. Several honeybee venom constituents were separated and the content of four of them (apamine, mast cell degranulating peptide, phospholipase A2 and melittin) were determined. By applying this methodology differences in chemical composition of honeybee venom were evaluated. In order to confirm the data obtained, the following steps and parameters were taken into account for the validation of the method: selectivity, precision (injection repeatability, analysis repeatability), accuracy (recovery), linearity and operating range, limit of detection and limit of quantitation. All steps of validation proved that the developed analytical procedure was suitable for its intended purpose (standardization). Due to its simplicity, the developed method can be easily automated and incorporated into routine operations both in the bee venom identification, quality control and assay tests.  相似文献   

3.
The aim of this study was to develop a new precise and accurate CZE-DAD method for honeybee venom analysis using cytochrome c as an internal standard. The 64.5 cm total length, 56 cm effective length, 75 μm ID, and 360 μm OD uncoated fused-silica capillary was used. The samples were injected into the capillary under a 50-mbar pressure for 7 s. There were 15 kV of electric field across the capillary applied. The current intensity was 26 μA. The separation was carried out at 25 °C. The analysis was run with the normal electrode polarity. The following steps and parameters were taken into account for the validation of the developed method: selectivity, precision, accuracy, linearity, limit of detection and limit of quantitation. All steps of the validation procedure proved that the developed analytical procedure was suitable for its intended purpose. Possibly this was the first study in which several honeybee venom components were separated and five of them were identified by capillary zone electrophoresis. In addition, the developed method was applied for quantitative analysis of 38 honeybee venom samples. The content (relative to the dry venom mass) of analyzed peptides in honeybee venom samples collected in 2002–2007 was as follows: apamine from 0.93% to 4.34% (mean, 2.85 ± 0.79%); mast cell degranulating peptide (MCDP) from 1.46% to 4.37% (mean, 2.82 ± 0.64%); phospholipase A2 from 7.41% to 20.25% (mean, 12.95 ± 3.09%); melittin from 25.40% to 60.27%, (mean, 45.91 ± 9.78%). The results were compared with the experimental data obtained for the same venom samples analyzed earlier by the HPLC method. It was stated that HPCE and HPLC data did not differ significantly and that the HPCE method was the alternative for the HPLC method. Moreover, using the results obtained principal component analysis (PCA) was applied to clarify the general distribution patterns or similarities of four major honeybee venom constituents collected from two different bee strains in various months and years. PCA has shown that the strain of bee appears to be the only criteria for bee venom sample classification. Strong correlations between apamine, MCDP, phospholipase A2, and melittin were confirmed. These correlations have to be taken into account in the honeybee venom standardization. The developed method due to its simplicity can be easily automated and incorporated into routine operations both in the bee venom identification, quality control, and standardization of the product.  相似文献   

4.

A simple, reproducible, and efficient liquid chromatographic method was developed with UV detection. Water (0.05% TFA):acetonitrile (0.05% TFA) was used as the mobile phase in a gradient system for the determination of procyanidin B2 (PB2) and epicatechin (EC) in the bark of Guazuma ulmifolia Lam. The analysis was performed using a Phenomenex Gemini RP C18 column (5 μm) as stationary phase, at 30 °C, with a flow rate of 0.8 mL min−1, at a wavelength of 210 nm for detection and determination. The main validation parameters of the method were also determined. Calibration curves were found to be linear, with ranges of 20.00–150.00 (PB2) and 10.00–110.00 μg mL−1 (EC). The correlation coefficients of linear regression analysis were between 0.9981 and 0.9988, and the detection limits were between 2.89 and 2.54 μg mL−1. The contents of PB2 and EC were successfully determined, with satisfactory reproducibility and recovery. Recoveries of the PB2 and EC were 103.00 and 104.01%, respectively. The method was successfully applied to the determination of procyanidins in the bark of G. ulmifolia.

  相似文献   

5.
Earnestly  Femi  Lim  Lee Wah  Takeuchi  Toyohide 《Chromatographia》2014,77(21):1539-1544

A non-suppressed contactless conductivity detector has been used as a capillary detector in a capillary ion chromatograph, combining a reversed-phase C30 column permanently modified with ionic surfactant. The C30 column (100 × 0.32 mm. id) was modified with sodium dodecyl sulfate (SDS) for the separation of inorganic cations. Monovalent cations could be separated by the proposed system, in which methanesulfonic acid (MSA) and SDS were employed as the mobile phase component, but divalent cations could not be eluted under this condition. As for the case of SDS used as the eluent, an H+-cation-exchange column was placed before the sample injector to convert the Na+ from the eluent into H+, and when the mixture of MSA and dodecyl sulfuric acid was used as the eluent, the retention of cations was improved and baseline separation of the cations was achieved within 23 min. The effect of the eluent composition on the retention behavior of inorganic cations was investigated. The repeatability of retention time and peak height varied from 0.39 to 0.58 and 2.21 to 3.25 % as relative standard deviation, respectively.

  相似文献   

6.
A non-suppressed contactless conductivity detector has been used as a capillary detector in a capillary ion chromatograph, combining a reversed-phase C30 column permanently modified with ionic surfactant. The C30 column (100 × 0.32 mm. id) was modified with sodium dodecyl sulfate (SDS) for the separation of inorganic cations. Monovalent cations could be separated by the proposed system, in which methanesulfonic acid (MSA) and SDS were employed as the mobile phase component, but divalent cations could not be eluted under this condition. As for the case of SDS used as the eluent, an H+-cation-exchange column was placed before the sample injector to convert the Na+ from the eluent into H+, and when the mixture of MSA and dodecyl sulfuric acid was used as the eluent, the retention of cations was improved and baseline separation of the cations was achieved within 23 min. The effect of the eluent composition on the retention behavior of inorganic cations was investigated. The repeatability of retention time and peak height varied from 0.39 to 0.58 and 2.21 to 3.25 % as relative standard deviation, respectively.  相似文献   

7.
Yang  Huan  Chen  Jun  Cai  Hao  Xu  Huiqin  Tong  Li  Cai  Baochang 《Chromatographia》2009,70(9-10):1451-1454

A simple, efficient and accurate liquid chromatographic method was established to determine five flavonoid aglycones, 7-hydroxy flavonone, pinocembrin, 2′,4′-dihydroxy chalcone, 2′-hydroxy-4′-methoxy chalcone and pinostrobin in the whole plant powder of Oxytropis falcata Bunge. These five compounds were separated on an Agilent Zorbax Eclipse XDB-C8 column (150 × 4.6 mm, 5 μm). Mobile phases were composed of water containing 0.1% v/v formic acid and acetonitrile using gradient elution. The established method was validated for linearity, accuracy, precision, limit of detection and quantitation, repeatability and stability.

  相似文献   

8.
This paper describes development and validation of a high-performance liquid chromatographic method for simultaneous analysis of tramadol hydrochloride (TR) and aceclofenac (AC) in a tablet formulation. When the combination formulation was subjected to ICH-recommended stress conditions, adequate separation of TR, AC, and the degradation products formed was achieved on a C18 column with 65:35 (v/v) 0.01 M ammonium acetate buffer, pH 6.5—acetonitrile as mobile phase at a flow rate of 1 mL min?1. UV detection was performed at 270 nm. The method was validated for specificity, linearity, LOD and LOQ, precision, accuracy, and robustness. The method was specific against placebo interference and also during forced degradation. The linearity of the method was investigated in the concentration ranges 15–60 μg mL?1 (r = 0.9999) for TR and 40–160 μg mL?1 (r = 0.9999) for AC. Accuracy was between 98.87 and 99.32% for TR and between 98.81 and 99.49% for AC. Because degradation products were well separated from the parent compounds, the method was stability-indicating.  相似文献   

9.
A liquid chromatographic method for the simultaneous determination of dextromethorphan hydrobromide, pyrilamine maleate and sodium benzoate in cough cold syrup has been developed. The method was based on replacing heptane sulfonate by sodium chloride as ion pairing agent. The addition of sodium chloride to the mobile phase has changed the retention behaviour of the basic drugs. The separation of these compounds was achieved in less than 8 min with an isocratic mobile phase consisting of acetonitrile/0.1 M dihydrogenphosphate buffer containing 0.1 M sodium chloride (29:71 v/v) at pH 2.5 and using a Kromasil C18 column. The analysis was performed at a flow rate of 1 mL min?1 and at a detection wavelength of 220 nm. The selectivity, linearity of calibration, accuracy, within and between days precision, limit of detection and quantification, recovery were examined as parts of the method validation. Calibration curves were linear in the range 1–140 μg mL?1 with a regression coefficient (R 2) better than 0.999. The results of the method repeatability (intra-day) and reproducibility (inter-day) were all less than 2% (= 6). The lowest detectable concentration of dextromethorphan hydrobromide and pyrilamine maleate varied between 0.10 and 0.12 μg mL?1. The proposed liquid chromatographic method was satisfactorily applied for the routine quality control of dextromethorphan hydrobromide, pyrilamine maleate and sodium benzoate in cough cold syrup formulations.  相似文献   

10.
An HPLC method has been developed for the separation of valdecoxib and a degradation product consisting of α and β-N-lactosyl sulfonamide, i.e. α and β anomers (SC-77852). Best results were achieved with a Chromolith Performance RP-18e column (100 mm × 4.6 mm), macropore size 2 μm, mesopore size 13 nm, with an eluent of methanol:water containing a 1% solution of TEA (36:64 v/v), pH 7.4 (adjusted with 85% orthophosphoric acid), at 22 °C. Detection was at 220 nm. The method was validated for its selectivity, linearity, precision (repeatability) and robustness. Quantitation and detection limits were determined for both valdecoxib and SC-77852. Method robustness was further evaluated by performing 23 full factorial design experiments. The final step, optimisation of the variables, was performed using response surface design. The validated method was used for assay of valdecoxib and SC-77852 in Bextra® film-coated tablets.  相似文献   

11.
A simple and repeatable liquid chromatography method with UV detection is described for the determination of pyrroloquinoline quinone in DNA binding studies first. Binding of pyrroloquinoline quinone to DNA was measured indirectly by determining unbound pyrroloquinoline quinone. Pyrroloquinoline quinone was chromatographed on a reversed-phase column using gradient elution with mobile phases of 0.1% trifluoroacetic acid (TFA) in deionized water and 0.1% TFA in acetonitrile at a flow-rate of 0.8 mL min?1 and detected at 249 nm. The mean content of unbound pyrroloquinoline quinone to three DNA in (hydroxymethyl) aminoethane(Tris–HCl) media were dropped from 99.3 to 80.3% in 250 min, and than to 64.8% at 1200 min, but the binding remained constant in deionized water. The method precision were validated with RSD 1.05 and 0.69% for peak areas and retention times. Validation of the method showed that the assay was linear from 25 to 2,000 μM and 5 to 2,000 μM pyrroloquinoline quinone in Tris–HCl and deionized water, respectively. The accuracy for three concentrations of pyrroloquinoline quinone with different types DNA in two media were within the given range of 80.9–113.6%.  相似文献   

12.
Osmoregulants are the substances produced by plants that assist in tolerating environmental stresses. Three commonly analysed osomoregulants include mannitol, betaine and proline. A simple, sensitive and rapid HPLC–ELSD method has been developed for the simultaneous analysis of these common osmoregulants in plant extracts. Osmoregulants were extracted using 80 % ethanol and separated on an NH2 column using 0.1 % formic acid and acetonitrile as the mobile phase. Retention time repeatability was 0.85, 1.50, and 0.93 % for mannitol, betaine and proline, respectively. The limit of detection (μmol) was 1.43 × 10?4, 7.81 × 10?5 and 1.08 × 10?4 for mannitol, betaine and proline, respectively. The developed method was applied to three different plant extracts, Stylosanthes guianensis, Atriplex cinerea and Rhagodia baccata. A second method using a C18 column with 0.1 % heptafluorobutyric acid and acetonitrile as the mobile phase proved to be a useful complementary method for verifying tentative peak identifications.  相似文献   

13.

This paper describes development and validation of a high-performance liquid chromatographic method for simultaneous analysis of tramadol hydrochloride (TR) and aceclofenac (AC) in a tablet formulation. When the combination formulation was subjected to ICH-recommended stress conditions, adequate separation of TR, AC, and the degradation products formed was achieved on a C18 column with 65:35 (v/v) 0.01 M ammonium acetate buffer, pH 6.5—acetonitrile as mobile phase at a flow rate of 1 mL min−1. UV detection was performed at 270 nm. The method was validated for specificity, linearity, LOD and LOQ, precision, accuracy, and robustness. The method was specific against placebo interference and also during forced degradation. The linearity of the method was investigated in the concentration ranges 15–60 μg mL−1 (r = 0.9999) for TR and 40–160 μg mL−1 (r = 0.9999) for AC. Accuracy was between 98.87 and 99.32% for TR and between 98.81 and 99.49% for AC. Because degradation products were well separated from the parent compounds, the method was stability-indicating.

  相似文献   

14.
Euterpe oleracea fruits have gained much attention because of their phenolic constituents that have shown potential health benefits. The aim of this work was to quantify the major non-anthocyanin flavonoids (NAF) in the fruit juice by an accurate method coupling ultra-high pressure liquid chromatography with a linear ion trap-high resolution Orbitrap mass spectrometry system (UHPLC-LTQ-Orbitrap MS). Fruits were processed to juice, and then the juice was lyophilized and defatted. The residue was then extracted in the presence of methanol by sonication. The extraction time was optimized and recovery rates of the extraction were >90 %. The extracts were dried and solubilized again in 40 % MeOH, which showed the best compromise for MS detection. For the UHPLC quantification, a HSS C18 column (1.8 μm) was used with a gradient elution of methanol and water both with 0.1 % formic acid. Total error and accuracy profiles were used as validation criteria. Seven compounds and their isomers were successfully separated, including the major NAF. Calibration in the matrix was found to be more accurate than calibration without matrix. Trueness (<15 % relative bias), repeatability, and intermediate precision (<13 % RSD), selectivity, response function, linearity, LOD (ranged from 0.04 to 0.81 μg/mL) and LOQ (0.15–5.78 μg/mL) for 12 compounds were evaluated and the quantification method was validated. Its applicability was demonstrated on real samples from different suppliers. Their qualitative and quantitative profiles were similar and some compounds were for the first time quantified. In addition, eriodictyol was identified for the first time in this fruit along with five other flavonoids for which possible structures were proposed.  相似文献   

15.
A simple, rapid, and reproducible isocratic reversed-phase LC method has been established for simultaneous analysis of mirodenafil and its two main metabolites, SK3541 and SK3544, in rat plasma, urine, and tissue homogenates. Samples were deproteinized with acetonitrile containing sildenafil (internal standard). The compounds were separated on a C18 column with 52:48 (v/v) 0.02 m ammonium acetate buffer (pH 6)—acetonitrile as mobile phase at a flow rate of 1.4 mL min?1. UV detection was at 254 nm and detection limits of mirodenafil, SK3541, and SK3544 in plasma were 0.03, 0.05, and 0.1 μg mL?1, respectively. The method is applicable to pharmacokinetic studies of mirodenafil and its metabolites in rats.  相似文献   

16.
《Analytical letters》2012,45(17):2808-2820
A SPE-LC-MS/MS method was developed and validated for the determination of three active pharmaceutical ingredients [API A (3-([2-(diaminomethyleneamino)thiazol-4-yl]methylthio)-N′-sulfamoyl propanimid amide, API B 5-[(2 R)-2-[2-(2-ethoxyphenoxy)ethylamino]propyl]-2-methoxybenzenesulfonamide hydrochloride, API C 1-azabicyclo[2.2.2]octan-8-yl (1S)-1-phenyl-3,4-dihydro-1H-isoquinoline-2-carboxylate] in the wastewater of a chemical synthesis production facility. The SPE-LC-MS/MS method was validated in actual influent and effluent samples. Linearity, LOD, LOQ, repeatability, intermediate precision, and recovery were determined. An LOQ of 400 μg · L?1, 1.0 μg · L?1, and 6 μg · L?1, repeatability of 2.5% CV, 14.8% CV, and 11.9% CV, intermediate precision of 7.8% CV, 11.0% CV, and 8.7% CV and SPE recovery of 114%, 103%, and 91% was determined for API A, B, and C, respectively, in influent. An LOQ of 400 μg · L?1, 0.8 μg · L?1, and 6 μg · L?1, repeatability of 2.0% CV, 11.0% CV, and 10.9% CV, intermediate precision of 1.7% CV, 6.8% CV, and 10.2% CV and SPE recovery of 116%, 96%, and 115% was established for API A, B, and C, respectively, in effluent. Coefficients of correlation for each analyte were >0.9301 confirming the linearity of the method. The LC-MS/MS method was used for an on-going monitoring program for these pharmaceuticals in wastewater. The method development techniques, validation procedures, and results from real wastewater samples are presented in this paper.  相似文献   

17.
A sensitive and simple method has been established for simultaneous preconcentration of trace amounts of Pb (II) and Ni (II) ions in water samples prior to their determination by flame atomic absorption spectrometry. This method was based on the using of a micro-column filled with graphene oxide as an adsorbent. The influences of various analytical parameters such as solution pH, adsorbent amount, eluent type and volume, flow rates of sample and eluent, and matrix ions on the recoveries of the metal ions were investigated. Using the optimum conditions, the calibration graphs were linear in the range of 7–260 and 5–85 μg L?1 with detection limits (3Sb) of 2.1 and 1.4 μg L?1 for lead and nickel ions, respectively. The relative standard deviation for 10 replicate determinations of 50 μg L?1 of lead and nickel ions were 4.1% and 3.8%, respectively. The preconcentration factors were 102.5 and 95 for lead and nickel ions, respectively. The adsorption capacity of the adsorbent was also determined. The method was successfully applied to determine the trace amounts of Pb (II) and Ni (II) ions in real water samples. The validation of the method was also performed by the standard reference material.  相似文献   

18.
Zhang  Chunni  Sun  Xinguang  Zhao  Yang  Zhang  Jie  Ma  Fengxia  Long  Zhen  Liang  Lina  Wang  Yingzi  Ma  Baiping 《Chromatographia》2016,79(19):1381-1386

In this work, a simple and rapid high-performance liquid chromatography coupled with charged aerosol detector (HPLC-CAD) method was first developed for the quantitation of toosendanin, the major constituent of the dried fruit of Melia toosendan Sieb. Et Zucc. Samples were well separated on an Agilent ZOBAX SB C18 column (4.6 mm × 250 mm, 5 μm) by isocratic elution using 33 % acetonitrile and 67 % water containing 0.1 % formic acid (v/v) at the flow rate of 1.0 mL min−1. The nitrogen inlet pressure of the charged aerosol detector (CAD) was 35 psi, and the nebulizer chamber temperature was 35 °C. The established method was well validated. Satisfactory linearity was achieved (r 2 > 0.9997) in a relatively wide concentration range (5–500 μg mL−1). The intra- and inter-day precisions, repeatability, and stability of the method were good with relative standard deviations (RSDs) of 1.05, 2.23, 2.39, and 2.03 %, respectively. The method also showed excellent accuracy with recovery rates of 97.42–101.87 %. Particularly, CAD showed much better sensitivity (LOQ 4 μg mL−1) than evaporative light scattering detector (LOQ 100 μg mL−1) for toosendanin’s determination. The established method was further applied in the quantitation of toosendanin in 39 batches of raw and stir-fried toosendan fructus. The HPLC-CAD method was rapid and accurate, and could be used for the routine analysis and quality control of toosendan fructus and its preparations.

  相似文献   

19.
He  Xiaoai  Hu  Gaoyun  Liu  Zhi  Cao  Wei  Hu  Xiaolei  Tao  Lijian  Cheng  Zeneng 《Chromatographia》2008,67(11):947-950

A simple, rapid, and reproducible isocratic reverse-phase HPLC method was developed to simultaneously determine AKF-PD and its two oxidized metabolites in rat plasma. 5-Carboxyl-1-phenyl-2-(1H)-pyridone and phenacetin were used as internal standards to ensure the precision and accuracy of the method. The analytes were separated on a C18 reversed-phase column with methanol—phosphate buffer (20 mM, pH 2.5) as mobile phase. The limits of detection for AKF-PD and its two oxidized metabolites was 0.1 μg mL−1. The method is applicable for the pharmacokinetic studies of AKF-PD and its metabolites in rats.

  相似文献   

20.
A simple, rapid, and reproducible isocratic reverse-phase HPLC method was developed to simultaneously determine AKF-PD and its two oxidized metabolites in rat plasma. 5-Carboxyl-1-phenyl-2-(1H)-pyridone and phenacetin were used as internal standards to ensure the precision and accuracy of the method. The analytes were separated on a C18 reversed-phase column with methanol—phosphate buffer (20 mM, pH 2.5) as mobile phase. The limits of detection for AKF-PD and its two oxidized metabolites was 0.1 μg mL?1. The method is applicable for the pharmacokinetic studies of AKF-PD and its metabolites in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号