首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 857 毫秒
1.
基于3D-Voronoi技术构建了泡沫铝芯层的三维细观有限元模型,对梯度泡沫铝夹芯管在内爆炸载荷下的动态响应进行了数值模拟。分析讨论了夹芯管结构内外管的壁厚、泡沫芯层的相对密度、芯层梯度分布等参数对夹芯管结构的抗爆性能与吸能性能的影响,并与无芯层的双层圆管进行了对比。结果表明:泡沫材料的相对密度可通过改变泡沫胞元大小和胞元壁厚进行调控,利用两种方式构建的夹芯管计算结果一致;保持内、外圆管总质量不变,增大内管壁厚可以有效减小外管的塑性变形,但会影响泡沫芯层的能量耗散;泡沫芯层的填充可以有效降低内管的塑性变形,正梯度泡沫铝夹芯管的抗爆性能优于均匀泡沫及负梯度泡沫夹芯管。  相似文献   

2.
The elastic stability of a rubber-like, thick-walled tube which is subjected to finite torsional deformation is investigated both theoretically and experimentally. The analysis is based on the theory of finite elastic deformations, in cojunction with the method of small displacements superposed on large elastic deformations. The governing field equations are solved by a numerical scheme which determines the critical buckling torque and the associated buckling mode of the tube. The predicted results compare closely with the experimental measurements of the buckling of thick-walled silicone rubber tubes tested under finite twist.  相似文献   

3.
Functional grading of rubber-like materials is suggested as a means of controlling their mechanical response within the context of finite thermoelasticity. To illustrate the concept of functional grading, we consider the axial shearing deformation of a radially heated, isotropic, incompressible, hollow rubber tube. The temperature stiffening, the strain stiffening, and the radially varying shear modulus of rubber tubes are modeled here by generalizing the Neo-Hookean and the Gent models. Local energy and momentum balance equations are solved to obtain the temperature and stress–strain fields in the sheared tube. The shear strain becomes highly inhomogeneous with an increase in temperature gradient, whereas functional grading of the tube can perfectly homogenize the strain. This paper indicates the potential of functionally grading rubbers to control their mechanical response in thermally hostile environments.  相似文献   

4.
The finite amplitude, free radial oscillations of a thick-walled circular cylindrical tube are studied for an arbitrary incompressible, isotropic and homogeneous rubber-like material having limiting molecular chain extensibility. First, based on classical results for hyperelastic tubes, some results for thick-walled Mooney-Rivlin tubes are described graphically in the phase plane. Then the periodicity of the finite amplitude, free oscillations of a general limited elastic, thick-walled tube is studied; and some analytical results for the Gent model are illustrated in several numerical examples. Results for thick-walled Gent tubes are compared with those for corresponding Mooney-Rivlin tubes; and the motion of thin-walled Gent tubes is illustrated in the phase plane. Physical conclusions are presented. The period of small amplitude oscillations of an arbitrary elastic or limited elastic tube is derived from relations obtained by a linearization of a general class of equations of which the tube problem is a special case. Classical results of the linear theory are thereby recovered and compared with results for Mooney-Rivlin and Gent tubes.  相似文献   

5.
The problem of the finite axisymmetric deformation of a thick-walled circular cylindrical elastic tube subject to pressure on its external lateral boundaries and zero displacement on its ends is formulated for an incompressible isotropic neo-Hookean material. The formulation is fully nonlinear and can accommodate large strains and large displacements. The governing system of nonlinear partial differential equations is derived and then solved numerically using the C++ based object-oriented finite element library Libmesh. The weighted residual-Galerkin method and the Newton-Krylov nonlinear solver are adopted for solving the governing equations. Since the nonlinear problem is highly sensitive to small changes in the numerical scheme, convergence was obtained only when the analytical Jacobian matrix was used. A Lagrangian mesh is used to discretize the governing partial differential equations. Results are presented for different parameters, such as wall thickness and aspect ratio, and comparison is made with the corresponding linear elasticity formulation of the problem, the results of which agree with those of the nonlinear formulation only for small external pressure. Not surprisingly, the nonlinear results depart significantly from the linear ones for larger values of the pressure and when the strains in the tube wall become large. Typical nonlinear characteristics exhibited are the “corner bulging” of short tubes, and multiple modes of deformation for longer tubes.  相似文献   

6.
热超弹性圆筒的不稳定性   总被引:2,自引:1,他引:1  
任九生  程昌钧 《力学学报》2007,39(2):283-288
应用有限变形弹性理论分析了受内压和轴向拉伸作用的不可压热超弹性圆筒发生非均 匀变形的不稳定性问题. 受内压和轴向拉力作用的薄壁圆筒,当内压较小时,圆筒发生稳定 的均匀膨胀变形;当内压大于某一临界值时,圆筒产生复杂的非均匀变形,其一部分膨胀变 形很大,形如``灯泡'状,而另一部分仅仅是轻微膨胀,且此时的变形是不稳定的. 但对厚 壁圆筒而言,不论压力如何,总是发生稳定的均匀膨胀变形. 根据圆筒的变形曲线,给出了 圆筒可以发生不稳定变形的临界厚度. 同时,讨论了轴向拉伸和温度场对圆筒变形的影响.  相似文献   

7.
Mechanical properties, such as the deformation and stress distributions for venous walls under the combined load of transmural pressure and axial stretch, are examined within the framework of nonlinear elasticity with one kind of hyper-elastic strain energy functions. The negative pressure instability problem of the venous wall is explained through energy comparison. First, the deformation equation of the venous wall under the combined loads is obtained with a thin-walled circular cylindrical tube. The deformation curves and the stress distributions for the venous wall are given under the normal transmural pressure, and the regulations are discussed. Then, the deformation curves of the venous wall under the negative transmural pressure or the internal pressure less than the external pressure are given. Finally, the negative pressure instability problem is discussed through energy comparison.  相似文献   

8.
铅冷钠冷快堆核电设备中的蒸汽发生器,有着在液态金属和水之间进行热交换的作用,其换热部分由排列的换热管组成。贴合式的双壁管是一种具有高换热效率及抵抗管裂纹扩展的管材,适合于这种应用环境。这种管材的内外管间存在残余压力,这是内外管紧贴的标志。然而在经历升至高温又降温的过程后,内外管间残余压力有可能消失引起两管脱开。为了得知温度对贴合式双壁金属管的具体影响,本文设计了一种拉伸法来制备双壁管,并同时采用有限元数值模拟管的加工制备过程并得到了内外管间的残余应力,再对加温后降温的过程进行模拟,分析换热管残余应力和应变状态进行了分析的变化,并通过初步试验来进行验证。通过研究,结果表明温度变化引起的塑性变形是管间残余压力变化的主要原因。通过控制管的加工过程来控制管材加工程度的方法,可望应对温度变化对管稳定性的影响。  相似文献   

9.
A direct, natural extension of Hooke’s law to finite strain was achieved by R. Hill in 1978, employing the notion of work-conjugate measures of stress and strain. With Seth-Hill (Doyle-Ericksen) class of finite strain measures, this extension actually defines a broad class of compressible hyperelastic materials at finite strain, each of which retains the simple linear structure of Hooke’s law as stress–strain relationship. Several known simple elasticity models at finite strain are included as its particular examples. With a novel idea of utilizing a suitable parametric variable, here we present a unified study of the free-end torsion problem (Poynting effects) of thin-walled cylindrical tubes made of the foregoing Hill’s class of Hookean type hyperelastic materials. We show that it is possible to derive a unified exact solution to the nonlinear coupling equations relating the torque (the shear stress) and the controlling deformation quantities including, in particular, the axial length change. Discussions and comparisons concerning various Hookean type elasticity models are made based on the exact solution obtained.  相似文献   

10.
Mechanical responses of materials undergoing large elastic deformations can exhibit a loss of stability in several ways. Such a situation can occur when a thin-walled cylinder is inflated by an internal pressure. The loss of stability is manifested by a non-monotonic relationship between the inflating pressure and internal volume of the tube. This is often called limit point instability. The results, known from the literature, show that isotropic hyperelastic materials with limiting chain extensibility property always exhibit a stable response if the extensibility parameter of the Gent model satisfies Jm<18.2. Our study investigates the same phenomenon but for tubes with anisotropic form of the Gent model (finite extensibility of fibers). Anisotropy, used in our study, increases the number of material parameters the consequence of which is to increase degree of freedom of the problem. It will be shown that, in stark contrast to isotropic material, the unstable response is predicted not only for large values of Jm but also for Jm≈1 and smaller, and that the existence of limit point instability significantly depends on the orientation of preferred directions and on the ratio of linear parameters in the strain energy density function (this ratio can be interpreted as the ratio of weights by which fibers and matrix contribute to the strain energy density). Especially tubes reinforced with fibers oriented closely to the longitudinal direction are susceptible to a loss of monotony during pressurization.  相似文献   

11.
Forlong, ductile, thick-walled tubes under internal pressure instabilities and final failure modes are studied experimentally and theoretically. The test specimens are closed-end cylinders made of an aluminum alloy and of pure copper and the experiments have been carried out for a number of different initial external radius to internal radius ratios. The experiments show necking on one side of the tubes at a stage somewhat beyond the maximum internal pressure. All tubes, except for one aluminum alloy tube, failed by shear fracture under decreasing pressure. The aluminum alloy tubes exhibited localized shear deformations in the neck region prior to fracture and also occasionally surface wave instabilities. The numerical investigation is based on an elastic-plastic material model for a solid that develops a vertex on the yield surface, using representations of the uniaxial stress-strain curves found experimentally. In contrast to the simplest flow theory of plasticity this material model predicts shear band instabilities at a realistic level of strain. A rather sharp vertex is used in the material model for the aluminum alloy, while a more blunt vertex is used to characterize copper. The theoretically predicted bifurcation into a necking mode, the cross-sectional shape of the neck, and finally the initiation and growth of shear bands from the highly strained internal surface in the neck region are in good agreement with the experimental observations.  相似文献   

12.
In the present paper, the stress-strain state of tubes made of inhomogeneous elastic materials is considered. We discuss what causes the onset of inhomogeneity and solve a problem for a tube consisting of an inhomogeneous and a homogeneous layer. It is shown how the variations in the thickness ratio of the homogeneous and inhomogeneous material layers affect the values of the longitudinal and circular deformations on the external surface of the tube under the action of constant internal pressure; it is noted that this effect can be used to monitor the pipeline state and to ensure its safe operation. A method for identifying mechanical properties of deformable inhomogeneous materials is proposed; this method is based on the use of thick-walled tubular specimens in calibration tests, which is especially convenient when analyzing the action of aggressive media or radiation on the properties of deformable materials.  相似文献   

13.
Mechanics of deformation of single- and multi-wall carbon nanotubes   总被引:1,自引:0,他引:1  
An effective continuum/finite element (FE) approach for modeling the structure and the deformation of single- and multi-wall carbon nanotubes (CNTs) is presented. Individual tubes are modeled using shell elements, where a specific pairing of elastic properties and mechanical thickness of the tube wall is identified to enable successful modeling with shell theory. The incorporation and role of an initial internal distributed stress through the thickness of the wall, due to the cylindrical nature of the tube, are discussed. The effects of van der Waals forces, crucial in multi-wall nanotubes and in tube/tube or tube/substrate interactions, are simulated by the construction of special interaction elements.The success of this new CNT modeling approach is verified by first comparing simulations of deformation of single-wall nanotubes with molecular dynamics results available in the literature. Simulations of final deformed configurations, as well strain energy histories, are in excellent agreement with the atomistic models for various deformations. The approach was then applied to the bending of multi-wall carbon nanotubes (MWNTs), and the deformed configurations were compared to corresponding high-resolution images from experiments. The proposed approach successfully predicts the experimentally observed wavelengths and shapes of the wrinkles that develop in bent MWNTs, a complex phenomenon dominated by inter-layer interactions. Presented results demonstrate that the proposed FE technique could provide a valuable tool for studying the mechanical behavior of MWNTs as single entities, as well as their effectiveness as load-bearing entities in nanocomposite materials.  相似文献   

14.
Traditional constitutive frameworks for high-strain materials are ill-suited to solve extension and inflation, one of the simplest problems involving tubes, or more complicated problems. Moreover, it is experimentally necessary to minimize the covariance amongst constitutive response functions. We sought, hence, a constitutive framework that minimizes covariance and simplifies the balance equations for tubes, hoses, and arteries. Central to this theory are six objective scalars or strain attributes that decouple dilatation and distortion and succinctly define the strain. Because there is a one-to-one relationship between them and the components of the Right Cauchy–Green deformation tensor, these six strain attributes can be used to define the strain energy density function for hyperelastic materials. This approach yields mostly orthogonal response terms for high strain deformation (14 of the 15 inner products vanish). For infinitesimal deformation, the response terms are fully orthogonal. Further utility is demonstrated by showing how the governing equations are simplified for tubular structures and how response functions can be determined for the first time from the extension and inflation of thick-walled tubes composed of a homogeneous material with incompressible, hyperelastic behavior. This solution is applicable for materials with orthotropic behavior, and using the chain rule, this solution can be used for materials with isotropic behavior.  相似文献   

15.
赵聃  朱祎国  胡平  张万喜 《计算力学学报》2014,31(4):501-505,544
以弹性变形梯度作为基本变量,结合热力学理论构造了单晶有限变形的热、力耦合计算模型。该模型考虑了温度、变温速率以及塑性耗散等条件对单晶有限变形的影响,相对于传统的以弹性变形梯度为基本变量的晶体塑性模型,算法能够体现温度效应的影响。采用隐式的积分方法对建立的控制方程进行计算以保证求解过程的稳定。以1100Al单晶为例计算了不同升温、降温速率,以及不同应变率影响下的材料应力-应变的响应。结果表明,模型能较好地反映变温过程中,单晶各向异性性质的演化以及应力、应变之间关系的变化。  相似文献   

16.
The finite-strain theory has been used to study the creep behaviour of a thick-walled cylinder under large strains. The analysis is divided into two parts. In part 1 the creep deformation of a thick-walled cylinder of an anisotropic material subjected to internal pressure has been discussed. The effect of the anisotropy has been depicted graphically. It is found that the anisotropy of the material has a significant effect on the axial stress, strain and strain rate. Part 2 of the paper deals with the creep analysis of cylinders of either isotropic or anisotropic materials subjected to combined internal and external pressures. The effect of the anisotropy is found to be similar to that found in part 1. It is seen, however, that the introduction of external pressure results in decreasing the strain rate and thus increasing the life of the cylinder.  相似文献   

17.
Multiaxial stress-strain damage relations, describing both time-independent and time-dependent strain and damage creation are postulated. The influence of damage creation on the load carrying capacity of simple structures is discussed. The time-independent deformation, and loss of stability, of a thick-walled cylinder under torque and internal pressure are analysed. The results are shown to be similar to previously found results for a beam under tension and bending.  相似文献   

18.
By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material (FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.  相似文献   

19.
高玉魁  陶雪菲 《爆炸与冲击》2021,41(4):041401-1-041401-26
高速冲击表面处理过程中的应变率对金属材料的宏观力学性能和微观组织结构都具有重要影响。根据当前应变率效应的研究成果,从宏观与微观相结合的角度出发,综述了高速冲击表面处理过程中应变率对金属材料强度和塑性的影响规律,并重点阐述了不同应变率下金属材料内部微观组织结构的演变规律,主要包括晶粒结构、绝热剪切带、相变、位错组态和析出相以及变形孪晶等。此外,还分析了组织结构随应变率的演化和微观变形机制的转变对材料力学性能的强化和弱化机理。最后,对高速冲击表面处理梯度组织的变形特点进行了总结。提出了不同组织结构对材料性能影响的综合效应模型,以期为应变率效应的深入研究奠定基础。  相似文献   

20.
Classical elastoplastic theory predicts that the rotation angle near an interface between two mismatched materials is discontinuous under shear. The strain gradient effects, however, can be significant within a narrow region near the interface. This can be shown by application of the strain gradient plasticity. The matching expansion method was used to obtain asymptotic results. Comparison is then made with those found numerically for the interface torsion problem of a two-layered cylindrical tube. The strain gradient plasticity theory solution differs from that of the classical elastoplastic theory solution, depending on the properties aside from the interface behavior and the loading mode. A failure criterion is also proposed that accounts for the strain gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号