首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microcantilevers have recently received widespread attentions due to their extreme applicability and versatility in both biological and non-biological applications. Along this line, this paper undertakes the non-linear vibrations of a piezoelectrically driven microcantilever beam as a common configuration in many scanning probe microscopy and nanomechanical cantilever biosensor systems. A part of the microcantilever beam surface is covered by a piezoelectric layer (typically ZnO), which acts both as an actuator and sensor. The bending vibrations of the microcantilever beam are studied considering the inextensibility condition and the coupling between electrical and mechanical properties in the piezoelectric materials. The non-linear terms appear in the form of quadratic expression due to presence of piezoelectric layer, and cubic form due to geometrical non-linearities. The Galerkin approximation is then utilized to discretize the equations of motion. In addition, the method of multiple scales is applied to arrive at the closed form solution for the fundamental natural frequency of the system. An experimental setup consisting of a commercial piezoelectric microcantilever attached on the stand of a state-of-the-art microsystem analyzer for non-contact vibration measurement is utilized to verify the theoretical developments. It is found that the experimental results and theoretical findings are in good agreement, which demonstrates that the non-linear modeling framework could provide a better dynamic representation of the microcantilever than the previous linear models. Due to microscale nature of the system, excitation amplitude plays an important role since even a small change in the amplitude of excitation can lead to significant vibrations and frequency shift.  相似文献   

2.
Despite their simple structure and design, microcantilevers are receiving increased attention due to their unique sensing and actuation features in many MEMS and NEMS. Along this line, a non-linear distributed-parameters modeling of a microcantilever beam under the influence of a nanoparticle sample is studied in this paper. A long-range Van der Waals force model is utilized to describe the microcantilever-particle interaction along with an inextensibility condition for the microcantilever in order to derive the equations of motion in terms of only one generalized coordinate. Both of these considerations impose strong nonlinearities on the resultant integro-partial equations of motion. In order to provide an understanding of non-linear characteristics of combined microcantilever-particle system, a geometrical function is wisely chosen in such a way that natural frequency of the linear model exactly equates with that of non-linear model. It is shown that both approaches are reasonably comparable for the system considered here. Linear and non-linear equations of motion are then investigated extensively in both frequency and time domains. The simulation results demonstrate that the particle attraction region can be obtained through studying natural frequency of the system consisting of microcantilever and particle. The frequency analysis also proves that the influence of nonlinearities is amplified inside the particle attraction region through bending or shifting the frequency response curves. This is accompanied by sudden changes in the vibration amplitude estimated very closely by the non-linear model, while it cannot be predicted by the best linear model at all.  相似文献   

3.
Non-linear feedback control provides an effective methodology for vibration mitigation in non-linear dynamic systems. However, within digital circuits, actuation mechanisms, filters, and controller processing time, intrinsic time-delays unavoidably bring an unacceptable and possibly detrimental delay period between the controller input and real-time system actuation. If not well-studied, these inherent and compounding delays may inadvertently channel energy into or out of a system at incorrect time intervals, producing instabilities and rendering controllers’ performance ineffective. In this work, we present a comprehensive investigation of the effect of time delays on the non-linear control of parametrically excited cantilever beams. More specifically, we examine three non-linear cubic delayed-feedback control methodologies: position, velocity, and acceleration delayed feedback. Utilizing the method of multiple scales, we derive the modulation equations that govern the non-linear dynamics of the beam. These equations are then utilized to investigate the effect of time delays on the stability, amplitude, and frequency–response behavior. We show that, when manifested in the feedback, even the minute amount of delays can completely alter the behavior and stability of the parametrically excited beam, leading to unexpected behavior and responses that could puzzle researchers if not well-understood and documented.  相似文献   

4.
Non-linear free and forced vibrations of doubly curved isotropic shallow shells are investigated via multi-modal Galerkin discretization and the method of multiple scales. Donnell’s non-linear shallow shell theory is used and it is assumed that the shell is simply supported with movable edges. By deriving two different forms of the stress function, the equations of motion are reduced to a system of infinite non-linear ordinary differential equations with quadratic and cubic non-linearities. A quadratic relation between the excitation and the fundamental frequency is considered and it is shown that, although in case of hardening non-linearities the results resemble those found via numerical integration or continuation softwares, in case of softening non-linearity the solution breaks down as the amplitude becomes larger than the thickness. Results reveal that, expressing the relation between the excitation and fundamental frequency in this form, which was considered by many researchers as a useful tool in analyzing strong non-linear oscillators, yields in spurious results when the non-linearity becomes of softening type.  相似文献   

5.
This paper describes a comprehensive non-linear multiphysics model based on the Euler–Bernoulli beam equation that remains valid up to large displacements in the case of electrostatically actuated Mathieu resonators. This purely analytical model takes into account the fringing field effects and is used to track the periodic motions of the sensing parts in resonant microgyroscopes. Several parametric analyses are presented in order to investigate the effect of the proof mass frequency on the bifurcation topology. The model shows that the optimal sensitivity is reached for resonant microgyroscopes designed with sensing frequency four times faster than the actuation one.  相似文献   

6.
Non-linear vibrations of cantilever beams with feedback delays   总被引:1,自引:0,他引:1  
A comprehensive investigation of the effect of feedback delays on the non-linear vibrations of a piezoelectrically actuated cantilever beam is presented. In the first part of this work, we examine the linear and non-linear free responses of a beam subjected to a delayed-acceleration feedback. We show that the trivial solution loses stability via a Hopf bifurcation leading to limit-cycle oscillations. We analyze the stability of the dynamic response in the postbifurcation, close to the stability boundaries by examining the nature of the Hopf bifurcation and away from the stability boundaries by using the method of harmonic balance and Floquet theory. We find that, increasing the gain for certain feedback delays may culminate in quasiperiodic and chaotic oscillations of the beam.In the second part, we analyze the effect of feedback delays on a beam subjected to a harmonic base excitations. We find that the nature of the forced response is largely defined by the stability of the trivial solutions of the unforced response. For stable trivial solutions (i.e., inside the stability boundaries of the trivial solutions), the homogeneous response emanating from the feedback diminishes, leaving only the particular solution resulting from the external excitation. In this case, delayed feedback acts as a vibration absorber. On the other hand, for unstable trivial solutions, the response contains two co-existing frequencies. Depending on the excitation amplitude and the commensurability of the delayed-response frequency to the excitation frequency, the response is either periodic or quasiperiodic.  相似文献   

7.
Bending vibrations of a rotating shaft due to external random excitation are considered for the case of potential instability of the shaft's linear model due to the presence of internal or “rotating” damping. A two-degree-of-freedom model is studied which accounts for non-linearity in external or “non-rotating” damping. An explicit expression is obtained for a stationary joint probability density of displacements and velocities as an exact analytical solution to the corresponding Fokker-Planck-Kolmogorov equation. The results are used to develop criterion for on-line detection of instability for the operating shaft from its measured response.  相似文献   

8.
The focus of this work is to develop a technique to obtain numerical solution over a long range of time for non-linear multi-body dynamic systems undergoing large amplitude motion. The system considered is an idealization of an important class of problems characterized by non-linear interaction between continuously distributed mass and stiffness and lumped mass and stiffness. This characteristic results in some distinctive features in the system response and also poses significant challenges in obtaining a solution.

In this paper, equations of motion are developed for large amplitude motion of a beam carrying a moving spring–mass. The equations of motion are solved using a new approach that uses average acceleration method to reduce non-linear ordinary differential equations to non-linear algebraic equations. The resulting non-linear algebraic equations are solved using an iterative method developed in this paper. Dynamics of the system is investigated using a time-frequency analysis technique.  相似文献   


9.
The paper is concerned with the forced nonlinear multimode vibrations of thin cylindrical shells fully filled with a perfect incompressible fluid. The frequency response characteristics of shells undergoing steady-state vibration as simple (standing wave) and compound (traveling wave) deformation modes are plotted and examined __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 8, pp. 97–106, August 2006.  相似文献   

10.
A wide range of non-linear effects are observed in piezoceramic materials. For small stresses and weak electric fields, piezoceramics are usually described by linearized constitutive equations around an operating point. However, typical non-linear vibration behavior is observed at weak electric fields near resonance frequency excitations of the piezoceramics. This non-linear behavior is observed in terms of a softening behavior and the decrease of normalized amplitude response with increase in excitation voltage. In this paper the authors have attempted to model this behavior using higher order cubic conservative and non-conservative terms in the constitutive equations. Two-dimensional kinematic relations are assumed, which satisfy the considered reduced set of constitutive relations. Hamilton's principle for the piezoelectric material is applied to obtain the non-linear equation of motion of the piezoceramic rectangular parallelepiped specimen, and the Ritz method is used to discretize it. The resulting equation of motion is solved using a perturbation technique. Linear and non-linear parameters for the model are identified. The results from the theoretical model and the experiments are compared. The non-linear effects described in this paper may have strong influence on the design of the devices, e.g. ultrasonic motors, which utilize the piezoceramics near the resonance frequency excitation.  相似文献   

11.
The suppression of vibration amplitudes of an elastically-mounted square prism subjected to galloping oscillations by using a non-linear energy sink is investigated. The non-linear energy sink consists of a secondary system with linear damping and non-linear stiffness. A representative model that couples the transverse displacement of the square prism and the non-linear energy sink is constructed. A linear analysis is performed to determine the impacts of the non-linear energy sink parameters (mass, damping, and stiffness) on the coupled frequency and onset speed of galloping. It is demonstrated that increasing the damping of the non-linear energy sink can result in a significant increase in the onset speed of galloping. Then, the normal form of the Hopf bifurcation is derived to identify the type of instability and to determine the effects of the non-linear energy sink stiffness on the performance of the aeroelastic system near the bifurcation. The results show that the non-linear energy sink can be efficiently implemented to significantly reduce the galloping amplitude of the square prism. It is also shown that the multiple stable responses of the coupled aeroelastic system are obtained as well as the periodic responses, which are dependent on the considered non-linear energy sink parameters.  相似文献   

12.
In this study, the discretized finite volume form of the two-dimensional, incompressible Navier-Stokes equations is solved using both a frozen coefficient and a full Newton non-linear iteration. The optimal method is a combination of these two techniques. The linearized equations are solved using a conjugate-gradient-like method (CGSTAB). Various types of preconditioning are developed. Completely general sparse matrix methods are used. Investigations are carried out to determine the effect of finite volume cell anisotropy on the preconditioner. Numerical results are given for several test problems.  相似文献   

13.
Theoretical and experimental non-linear vibrations of thin rectangular plates and curved panels subjected to out-of-plane harmonic excitation are investigated. Experiments have been performed on isotropic and laminated sandwich plates and panels with supported and free boundary conditions. A sophisticated measuring technique has been developed to characterize the non-linear behavior experimentally by using a Laser Doppler Vibrometer and a stepped-sine testing procedure. The theoretical approach is based on Donnell's non-linear shell theory (since the tested plates are very thin) but retaining in-plane inertia, taking into account the effect of geometric imperfections. A unified energy approach has been utilized to obtain the discretized non-linear equations of motion by using the linear natural modes of vibration. Moreover, a pseudo arc-length continuation and collocation scheme has been used to obtain the periodic solutions and perform bifurcation analysis. Comparisons between numerical simulations and the experiments show good qualitative and quantitative agreement. It is found that, in order to simulate large-amplitude vibrations, a damping value much larger than the linear modal damping should be considered. This indicates a very large and non-linear increase of damping with the increase of the excitation and vibration amplitude for plates and curved panels with different shape, boundary conditions and materials.  相似文献   

14.
In engineering practice, most mechanical and structural systems are modelled as multi-degree-of-freedom (MDOF) systems such as, e.g., the periodic structures. When some components within the systems have non-linear characteristics, the whole system will behave non-linearly. The concept of non-linear output frequency response functions (NOFRFs) was proposed by the authors recently and provides a simple way to investigate non-linear systems in the frequency domain. The present study is concerned with investigating the inherent relationships between the NOFRFs for any two masses of non-linear MDOF systems with multiple non-linear components. The results reveal very important properties of the non-linear systems. These properties clearly indicate how the system linear characteristic parameters govern the propagation of the non-linear effect induced by non-linear components in the system. One potential application of the results is to detect and locate faults in engineering structures which make the structures behave non-linearly.  相似文献   

15.
On the free vibrations of a piezoceramic hollow sphere   总被引:1,自引:0,他引:1  
The aim of the paper is to analyze the free vibrations of a piezoceramic hollow sphere with radial polarization. Using the cnoidal method and a genetic algorithm solves the equations of a radially inhomogeneous spherically isotropic piezoelastic medium. The Reddy and the cosine laws represent the functionally graded property of material. It is seen that for a piezoceramic hollow sphere, the piezoelectric effect consists in increasing the values for the natural frequencies in the specified classes of vibrations.  相似文献   

16.
The present investigation deals with the dynamics of a two-degrees-of-freedom system which consists of a main linear oscillator and a strongly non-linear absorber with small mass. The non-linear oscillator has a softening hysteretic characteristic represented by a Bouc-Wen model. The periodic solutions of this system are studied and their calculation is performed through an averaging procedure. The study of non-linear modes and their stability shows, under specific conditions, the existence of localization which is responsible for a passive irreversible energy transfer from the linear oscillator to the non-linear one. The dissipative effect of the non-linearity appears to play an important role in the energy transfer phenomenon and some design criteria can be drawn regarding this parameter among others to optimize this energy transfer. The free transient response is investigated and it is shown that the energy transfer appears when the energy input is sufficient in accordance with the predictions from the non-linear modes. Finally, the steady-state forced response of the system is investigated. When the input of energy is sufficient, the resonant response (close to non-linear modes) experiences localization of the vibrations in the non-linear absorber and jump phenomena.  相似文献   

17.
Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation are studied analytically. The axial speed, as the source of parametric vibrations, is assumed to involve a mean speed, along with small harmonic variations. The method of multiple scales is applied to the governing non-linear equation of motion and then the natural frequencies and mode shape equations of the system are derived using the equation of order one, and satisfying the compatibility conditions. Using the equation of order epsilon, the solvability conditions are obtained for three distinct cases of axial acceleration frequency. For all cases, the stability areas of system are constructed analytically. Finally, some numerical simulations are presented to highlight the effects of system parameters on vibration, natural frequencies, frequency-response curves, stability, and bifurcation points of the system.  相似文献   

18.
The probability density function for transient response of non-linear stochastic system is investigated through the stochastic averaging and Mellin transform. The stochastic averaging based on the generalized harmonic functions is adopted to reduce the system dimension and derive the one-dimensional Itô stochastic differential equation with respect to amplitude response. To solve the Fokker–Plank–Kolmogorov equation governing the amplitude response probability density, the Mellin transform is first implemented to obtain the differential relation of complex fractional moments. Combining the expansion form of transient probability density with respect to complex fractional moments and the differential relations at different transform parameters yields a set of closed-form first-order ordinary differential equations. The complex fractional moments which are determined by the solution of the above equations can be used to directly construct the probability density function of system response. Numerical results for a van der Pol oscillator subject to stochastically external and parametric excitations are given to illustrate the application, the convergence and the precision of the proposed procedure.  相似文献   

19.
We investigate the non-linear forced vibrations of a thermally loaded annular plate with clamped–clamped immovable boundary conditions in the presence of a three-to-one internal resonance between the first and second axisymmetric modes. We consider the in-plane thermal load to be axisymmetric and excite the plate externally by a harmonic force near primary resonance of the second mode. We then use the non-linear von Kármán plate equations to model the behavior of the system and apply the method of multiple scales to investigate its responses. We found that the response can be periodic oscillations consisting of both modes, with a large component from the first mode. Moreover, the periodic solutions may undergo Hopf bifurcations, which lead to aperiodic oscillations of the plate.  相似文献   

20.
The non-linear free and forced vibrations of simply supported thin circular cylindrical shells are investigated using Lagrange's equations and an improved transverse displacement expansion. The purpose of this approach was to provide engineers and designers with an easy method for determining the shell non-linear mode shapes, with their corresponding amplitude dependent non-linear frequencies. The Donnell non-linear shell theory has been used and the flexural deformations at large vibration amplitudes have been taken into account. The transverse displacement expansion has been made using two terms including both the driven and the axisymmetric modes, and satisfying the simply supported boundary conditions. The non-linear dynamic variational problem obtained by applying Lagrange's equations was then transformed into a static case by adopting the harmonic balance method. Minimisation of the energy functional with respect to the basic function contribution coefficients has led to a simple non-linear multi-modal equation, the solution of which gives in the case of a single mode assumption an expression for the non-linear frequencies which is much simpler than that derived from the non-linear partial differential equation obtained previously by several authors. Quantitative results based on the present approach have been computed and compared with experimental data. The good agreement found was very satisfactory, in comparison with previous old and recent theoretical approaches, based on sophisticated numerical methods, such as the finite element method (FEM), the method of normal forms (MNF), and analytical methods, such as the perturbation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号