首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A stereoselective liquid chromatographic method to determine the enantiomers of ornidazole in human plasma and urine has been developed and validated. After addition of the internal standard (naproxen), samples were acidified and extracted with diethyl ether. The separation was performed on a Chiralcel OB-H column, using hexane-ethanol- glacial acetic acid (94:6:0.08, v/v) as the mobile phase. The method was validated for specificity, linearity, sensitivity, precision, accuracy and stability. For each enantiomer of ornidazole, linear calibration curves were obtained over the concentration range of 0.16–20 μg mL?1 in plasma and 0.32–20 μg mL?1 in urine. For both enantiomers of ornidazole in plasma and urine, the coefficient of variation for precision were consistently less than 12% and accuracy were within ±14% in terms of relative error. Application of the method to a preliminary pharmacokinetic study showed that this validated method was qualified for the direct determination of ornidazole enantiomers in human plasma and urine.  相似文献   

2.
Xu  Fan  Xu  Guili  Shang  Beicheng  Yu  Fang 《Chromatographia》2009,69(11):1421-1426

A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min−1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL−1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL−1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL−1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.

  相似文献   

3.
Lu  Yingnian  Wu  Kefeng  Liang  Nianci  Chen  George G. 《Chromatographia》2009,70(11):1599-1603

ent-11α-Hydroxy-15-oxo-kaur-16-en-19-oic acid (5F), a diterpenoid isolated from the Chinese herb Pteris semipinnata L, has been suggested to show antitumor properties. A simple and sensitive LC method was developed for the determination of 5F in rabbit plasma. The method involved liquid–liquid extraction using ethyl acetate under acidic conditions using naproxen as an internal standard. Separations were performed on a reversed-phase column with a mixture of 1% (v/v) glacial acetic acid and methanol (45:55, v/v) as mobile phase and UV detection was utilized at 242 nm. The calibration plot was linear in the range 0.20–10.0 μg mL−1 (correlation coefficients r 2 > 0.998). The detection limit was 0.20 μg mL−1, mean extraction recovery was above 82%, intra-day precision of the method was less than 6.4%, and inter-day precision was better than 8.7%, respectively. The validated assay was found to be suitable for the pharmacokinetic study of 5F in rabbits.

  相似文献   

4.

A simple, rapid, and stability-indicating reversed-phase high-performance liquid chromatographic (LC) method for analysis for dutasteride has been successfully developed. Chromatography was performed on a 150 mm × 4.6 mm C18 column with acetonitrile–water 60:40 (v/v) as isocratic mobile phase at 1.0 mL min−1. Ultraviolet detection of dutasteride was at 210 nm. Its retention time was approximately 10 min and its peak was symmetrical. Response was a linear function of concentration over the range 0.2–1 μg mL−1 (R 2 = 0.997) and the limits of detection and quantitation were was 0.05 and 0.10 μg mL−1, respectively. The method was validated for linearity, precision, repeatability, sensitivity, and selectivity. Selectivity was validated by subjecting dutasteride stock solution to photolytic, acidic, basic, oxidative, and thermal degradation. The peaks from the degradation products did not interfere with that from dutasteride. The method was used to quantify dutasteride in pharmaceutical preparations.

  相似文献   

5.
Fan Xu  Guili Xu  Beicheng Shang  Fang Yu 《Chromatographia》2009,69(11-12):1421-1426
A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min?1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL?1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL?1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL?1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.  相似文献   

6.
A liquid chromatographic method for analysis of pazufloxacin mesilate in human plasma and urine has been developed and validated for selectivity, sensitivity, accuracy, precision, and stability in pharmacokinetic analysis. The sensitivity of the method was 0.02 μg mL?1 in plasma and 0.5 μg mL?1 in urine, with overall intra-day and inter-day precision (RSD < 10%) and accuracy (90–120%) acceptable for clinical pharmacokinetic analysis. Recovery from plasma and urine was 80–110% for both pazufloxacin mesilate and enoxacin, the internal standard. Pazufloxacin was stable in both plasma and urine, with no significant degradation under four different conditions. The method was successfully used in a preliminary study of the bioavailability of pazufloxacin mesilate in healthy human volunteers after intravenous administration of 300 and 500 mg.  相似文献   

7.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/v) and separated on a C18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/v). The assay was linear in the concentration range between 0.05 and 25 μg mL?1 for paracetamol and 10–5,000 ng mL?1 for caffeine, with the lower limit of quantification of 0.05 μg mL?1 and 10 ng mL?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma.  相似文献   

8.
Wang  Qi  Chen  Xiuli  Zhang  Cuiwei  Liao  Mengya  Hu  Mingxing  Lin  Shuo  Xie  Yongmei  Yin  Wenya  Zhang  Yiwen 《Chromatographia》2015,78(21):1395-1400

A precise and sensitive LC method for determination of enantiomeric purity of trelagliptin has been developed and validated. Pre-column derivatization was performed before separation. Baseline separation with a resolution factor >2.5 was accomplished within 10 min by use of a Chiralpak AD column (250 × 4.6 mm; particle size 5 µm) and n-hexane–2-propanol (90:10 v/v) as mobile phase at a flow rate of 1 mL min−1. Eluted analytes were monitored by UV detection at 260 nm. The effects of mobile phase composition and temperature on enantiomeric selectivity and on resolution of enantiomers were thoroughly investigated. Calibration curves were plotted within the concentration range 0.005–2 mg mL−1 (n = 12), and recoveries between 98.23 and 101.34 % were obtained, with relative standard deviation (RSD) <1.39 %. LOD and LOQ for the trelagliptin derivative were 1.51 and 5.03 µg mL−1; those for its enantiomer were 1.49 and 4.94 µg mL−1, respectively. The method was evaluated and validated by analysis of bulk samples of trelagliptin of different enantiomeric purity. It was demonstrated that the method was accurate, robust, and sensitive, and enabled practical analysis of real samples.

  相似文献   

9.

This paper describes development and validation of a high-performance liquid chromatographic method for simultaneous analysis of tramadol hydrochloride (TR) and aceclofenac (AC) in a tablet formulation. When the combination formulation was subjected to ICH-recommended stress conditions, adequate separation of TR, AC, and the degradation products formed was achieved on a C18 column with 65:35 (v/v) 0.01 M ammonium acetate buffer, pH 6.5—acetonitrile as mobile phase at a flow rate of 1 mL min−1. UV detection was performed at 270 nm. The method was validated for specificity, linearity, LOD and LOQ, precision, accuracy, and robustness. The method was specific against placebo interference and also during forced degradation. The linearity of the method was investigated in the concentration ranges 15–60 μg mL−1 (r = 0.9999) for TR and 40–160 μg mL−1 (r = 0.9999) for AC. Accuracy was between 98.87 and 99.32% for TR and between 98.81 and 99.49% for AC. Because degradation products were well separated from the parent compounds, the method was stability-indicating.

  相似文献   

10.
Liu  Yongmei  Liao  Mengya  Zhang  Cuiwei  Bai  Yuli  Song  Honglian  Zhang  Yiwen  Wang  Xin 《Chromatographia》2015,78(23):1485-1489

A precise and sensitive LC method for the determination of repertaxin enantiomeric purity has been developed and validated. Baseline separation with a resolution higher than 2.0 was accomplished within 20 min using a Chiralpak AD-H column (250 × 4.6 mm; particle size 5 μm) and n-hexane:2-propanol (90:10 v/v) as mobile phase at a flow rate of 1 mL min−1. Eluted analytes were monitored by UV detection at 260 nm. The effects of mobile phase composition, temperature and flow rate on enantiomeric selectivity and on resolution of enantiomers were investigated. Calibration curves were plotted within the concentration range between 0.002 and 1.0 mg mL−1 (n = 3), and relative standard deviation (RSD) of the inter-batch assay and intra-batch assay was less than 1.27 and 1.16 %. LOD and LOQ for repertaxin were 0.65 and 2.19 μg mL−1; those for its enantiomer were 0.70 and 2.34 μg mL−1, respectively. The method was evaluated and validated by analysis of bulk samples of repertaxin of different enantiomeric purity. It was demonstrated that the method was accurate, robust, and sensitive, and enabled practical analysis of real samples.

  相似文献   

11.
Choi  Young Hee  Suh  Jung Hwa  Lee  Joo Hyun  Cho  Il Hwan  Lee  Chul Kyu  Lee  Myung Gull 《Chromatographia》2009,70(9-10):1435-1439

A simple, rapid, and reproducible reversed-phase LC method with UV detection at 215 nm has been developed for analysis of SP-8203 in rat samples. A C18 column was used with 3,000:1,050 (v/v) 0.01 m K2HPO4 buffer (pH 3)–acetonitrile as mobile phase at a flow rate of 1.7 mL min−1 at 50 °C. Samples were extracted with dichloromethane containing ondansetron (internal standard). Detection limits for SP-8203 in plasma, urine, and gastrointestinal tract samples were 0.05, 0.5, and 10 μg mL−1, respectively. The method was suitable for pharmacokinetic study of SP-8203 in rats after intravenous administration.

  相似文献   

12.

A simple stability-indicating reversed-phase liquid chromatographic method with diode-array detection was developed and validated for the quantitative determination of ebastine in tablets and syrup. The LC method was carried out on a C18 column with acetonitrile:phosphoric acid 0.1% pH 3.0 (55:45, v/v) as mobile phase, at a flow rate of 1.2 mL min−1. Ultraviolet detection of ebastine was at 254 nm. A linear response (r = 0.9999) was observed in the range of 10–80 μg mL−1. The RSD values for intra- and inter-day precision studies showed good results (RSD < 2%) and accuracy was greater than 98%. Validation parameters such as specificity and robustness were also determined. The method was found to be stability-indicating and can be applied to quantitative determination of ebastine in tablets and syrup.

  相似文献   

13.
14.

A reversed-phase liquid chromatography (RP-LC) method was validated for the determination of rupatadine in pharmaceutical dosage forms. The LC method was carried out on a Gemini C18 column (150 mm × 4.6 mm I.D.), maintained at 30 °C. The mobile phase consisted of ammonium acetate buffer (pH 3.0; 0.01 M) with 0.05% of 1-heptanesulfonic acid–acetonitrile (71.5:28.5, v/v), run at a flow rate of 1.0 mL min−1 and using photodiode array (PDA) detection at 242 nm. The chromatographic separation was obtained with retention time of 5.15 min, and was linear in the range of 0.5–400 μg mL−1 (r = 0.9999). The specificity and stability-indicating capability of the method was proven through the degradation studies and showing also, that there was no interference of the excipients. The accuracy was 100.39% with bias lower than 0.58%. The limits of detection and quantitation were 0.01 and 0.5 μg mL−1, respectively. Moreover, method validation demonstrated acceptable results for precision, sensitivity and robustness. The proposed method was applied for the analysis of pharmaceutical dosage forms assuring the therapeutic efficacy.

  相似文献   

15.
Yang  Xiao-ming  Zhang  Xiu-li  Chen  Yong-chang  Liu  Fang 《Chromatographia》2009,69(5-6):593-596

A sensitive and simple LC method for the quantification of ginkgolic acids in mice plasma has been developed. Following acetonitrile deproteinization, samples were separated on a SinoChrom ODS-AP C18 column. The mobile phase was 3% (v/v) acetic acid water solution–methanol (8:92, v/v) at a flow rate of 1.0 mL min−1. Detection was at 310 nm. Calibration curve was linear over the range of 0.25–50 μg mL−1 with intra- and inter-day precisions (RSD%) of less than 9.5%. The extraction recovery ranged from 87.0 to 90.2% (RSD 2.4–6.4%) for ginkgolic acids. The method was successfully applied to the pharmacokinetic study of ginkgolic acids in mice after oral dosing of 1.0 g kg−1.

  相似文献   

16.

A simple and rapid open-vessel focused microwave-assisted extraction (FMAE) method followed by LC analysis was developed for the determination of ketoprofen lysine salt in the presence of methyl p-hydroxybenzoate and propyl p-hydroxybenzoate preservatives in topical cream. Extraction were performed in acetone/potassium dihydrogenphosphate (25 mM, pH 3.0) (70:30 v/v) by reaching a target temperature of 65 °C in a 10 min linear ramp. The chromatographic separation was performed on a Discovery RP-Amide C16 column (250 × 4.6 mm I.D., 5 μm particle size). The optimal mobile phase consisted of acetonitrile/potassium dihydrogen phosphate 25 mM adjusted to pH 3.0 with phosphoric acid (50:50 v/v). The complete analytical procedure was validated with regard to limit of quantification, linearity, precision and accuracy. The method was linear over the concentration range of 0.08–0.12 mg mL−1; the relative standard deviations of intra- and inter-day assays were 1.9–2.3 and 1.8% respectively. The limit of quantification was 0.54 μg mL−1. The proposed method shows many advantages as short extraction time, little solvent consumption without requiring further sample clean-up steps before liquid chromatographic analysis and is proposed for vast scale screening of cream dosage forms aimed to the detection of counterfeit and substandard drugs.

  相似文献   

17.

A simple, isocratic, rapid, and accurate reversed-phase high-performance liquid chromatographic method has been established for quantitative determination of zonisamide. The method is also applicable to determination of related substances in the bulk drug. Chromatographic separation was achieved on a 250 mm × 4.6 mm, 5-μm particle, C18 column; the mobile phase was a 70:30 (v/v) mixture of 0.1% (v/v) aqueous triethylamine, adjusted to pH 2.5 with dilute orthophosphoric acid, and acetonitrile. Chromatographic resolution of zonisamide from its potential impurity, A, was found to be >2. The limits of detection and quantification of zonisamide and impurity A were 0.04 and 0.12 μg mL−1, respectively, for 20 μL injection volume. Recovery of zonisamide ranged from 98.5 to 101.2% and recovery of impurity A from a sample of zonisamide ranged from 97.4 to 102.7%. The method was validated for linearity, accuracy, precision, and robustness.

  相似文献   

18.
Zhang  Xianhua  Zhao  Xia  Zhang  Chao  Yang  Li  Xiong  Xin  Zhou  Yong  Yang  Yiheng  Duan  Jingli 《Chromatographia》2010,71(11):1015-1023

A sensitive and specific LC–MS-MS method is described for the simultaneous quantification of risperidone and 9-hydroxyrisperidone in human plasma. After extraction with tert-butyl methyl ether, plasma samples were separated on an Atlantis HILIC Silica C18 column (4.6 × 150 mm, 5 μm)with a mobile phase of ammonium formate buffer (10 mM, pH 4.0)/acetonitrile (40/60, v/v). Detection was by MS-MS. The method was fully validated according to the accuracy profile theory. It is based on β-expectation tolerance interval for the total measurement error which includes trueness and intermediate precision. The measurement uncertainty derived from β-expectation tolerance interval was estimated at each of the validation standards. The linearity fitted well over the range of 0.11–26.75 ng mL−1 for risperidone with an LLOQ of 0.11 ng mL−1, and for 9-hydroxyrisperidone, at a range of 0.15–37.8 ng mL−1 with an LLOQ of 0.15 ng mL−1. The intra- and inter-batch precision of risperidone were <5.71 and 8.22%, respectively. For 9-hydroxyrisperidone, the data were 5.78 and 6.48%. The recoveries were 88.78% (risperidone) and 70.35% (9-hydroxyrisperidone). The developed method was applied to a pharmacokinetic study of risperidone.

  相似文献   

19.
Uslu  Bengi  &#;zden  Tugba 《Chromatographia》2013,76(21):1487-1494

High efficiency and less elution are the basic requirements of high-speed chromatographic separation. In this study, a new gradient reverse phase chromatographic methods were developed using HPLC and UPLC systems for simultaneous determination of enalapril maleate (ENL) and hydrochlorothiazide (HCZ) in pharmaceutical dosage forms. The chromatographic separations of ENL and HCZ were achieved on a Waters μ-Bondapak C 18, (300 × 3.9 mm, 10 μm) and Waters Acquity BEH C18 (100 × 2.1 mm, 1.7 μm) columns for HPLC within 5.30 min and UPLC within a short retention time of 1.95 min, respectively. A linear response was observed over the concentration range 0.270–399 μg mL−1 of ENL, 0.260–399 μg mL−1 of HCZ for HPLC system and 0.270–399 μg mL−1 of ENL and 0.065–249 μg mL−1 of HCZ for UPLC system. Also, limit of detection for ENL was 1.848 ng mL−1 and 31.477 ng mL−1 for HCZ, 2.804 ng mL−1 for ENL and 2.943 ng mL−1 for HCZ using HPLC and UPLC, respectively. The proposed methods were validated according to ICH guideline with respect to precision, accuracy, and linearity. Forced degradation studies were also performed for both compounds in bulk drug samples to demonstrate the specificity and stability indicating power of the HPLC method. Comparison of system performance with conventional HPLC was made with respect to analysis time, efficiency, and resolution.

  相似文献   

20.
A simple, isocratic, stability-indicating liquid chromatographic method for quantitative determination of curcumin was successfully developed. The chromatographic separations were achieved using a Hi-Q-Sil C18; 4.6 mm × 250 mm and 10 μm particle size column employing acetonitrile and acetate buffer (pH 3.0; 60: 40, v/v) as the mobile phase. The analyte was subjected to acidic, basic, oxidative, thermal and photo degradation. The method was validated with respect to linearity, precision, accuracy, limit of detection and limit of quantification. Curcumin was detected by UV-Vis detector at 425 nm whereas the degradation products were detected at 280 nm. The method was linear over the concentration range of 1–10 μg mL?1. The limit of detection was found to be 0.06 μg mL?1 and the quantification limit was 0.21 μg mL?1. Considerable degradation of the analyte was observed when it was subjected to alkaline conditions. Accuracy, evaluated as recovery, was in the range of 97–103%. Intra-day precision and intermediate precision showed relative standard deviations <1% and <2% respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号