共查询到20条相似文献,搜索用时 15 毫秒
1.
A fast and simple method for simultaneous detection and quantification of the medicinally important E- and Z-guggulsterone from raw oleogum-resin of Commiphora wightii by UPLC was developed. Both E- and Z-guggulsterone were extracted from naturally occurring resin samples using ethyl acetate and methanol. Chromatographic separation of the analytes and their respective standards were performed on an Acquity UPLC BEH C 18 column followed by UV as well as a triple quadrupole detector in positive ionization mode. A linear gradient elution profile followed; mobile phase consisted of acetonitrile and 2 mM ammonium acetate in water. The method was validated over a range of 6.25 to 100 ng mL ?1 for both the guggulsterones. The calibration curves were linear with correlation coefficients of 0.9998 for E-guggulsterone and 0.9999 for Z-guggulsterone. The LOD and LOQ were 1.65 and 5.02 ng mL ?1 for E-guggulsterone and 2.57 and 7.79 ng mL ?1 for Z-guggulsterone respectively. The average recovery of E-guggulsterone (104.63%) and Z-guggulsterone (104.33%) achieved from spiked samples were consistent and reproducible. The intra- and inter-day assay precision of the analytes over the entire concentration range was less than 2%. The developed method required only 6 min to complete a run including 1 min to equilibrate the system and hence suitable for high throughput applications. Efficiency, reliability and accuracy of the developed method were evaluated by analyzing resin sample from different C. wightii populations. The result of this study offers improvement in terms of speed and sensitivity as compared to previously reported methods. 相似文献
2.
A specific and sensitive UPLC-MS–MS was developed for the determination of trimetazidine in human plasma. The sample preparation was based on a single-step liquid–liquid extraction with acetic ether. The chromatographic separation was on a C18 analytical column (50 mm × 2.1 mm, 1.7 μm) with acetonitrile and 10 mM ammonium acetate (30:70, v/v) as the mobile phase, and a triple-quadrupole mass spectrometer equipped with an electrospray ionization source (ESI) applied for detection. The method was linear over the concentration ranges of 0.25–100.00 ng mL−1 for trimetazidine, and the lower limit of quantification (LLOQ) was 0.25 ng mL−1. The intra- and inter-day relative standard deviation (RSD) were less than 15% and the relative error (RE) were all within 15%. Finally, this method has been successfully applied to analyze plasma samples from a bioequivalence study with 18 volunteers. 相似文献
3.
A specific and sensitive UPLC-MS–MS was developed for the determination of trimetazidine in human plasma. The sample preparation was based on a single-step liquid–liquid extraction with acetic ether. The chromatographic separation was on a C 18 analytical column (50 mm × 2.1 mm, 1.7 μm) with acetonitrile and 10 mM ammonium acetate (30:70, v/v) as the mobile phase, and a triple-quadrupole mass spectrometer equipped with an electrospray ionization source (ESI) applied for detection. The method was linear over the concentration ranges of 0.25–100.00 ng mL ?1 for trimetazidine, and the lower limit of quantification (LLOQ) was 0.25 ng mL ?1. The intra- and inter-day relative standard deviation (RSD) were less than 15% and the relative error (RE) were all within 15%. Finally, this method has been successfully applied to analyze plasma samples from a bioequivalence study with 18 volunteers. 相似文献
4.
A simple, fast and sensitive LC–MS/MS method was developed and validated for the simultaneous determination of the concentrations of temsirolimus and its major metabolite, sirolimus, in human whole blood. The blood sample (100 μL) after adding temsirolimus-d7 and sirolimus-d3 internal standards was precipitated with 0.200 mL of methanol/0.300 M zinc sulfate (70/30, v/v), then analyzed by a Shimatzu LC system coupled to a Sciex API-5000 mass spectrometer. The chromatographic separation was carried out on a BDS Hypersil C8 column (50 × 3.0 mm, 5 μm) at 50 °C with a mobile phase composed of methanol/water/formic acid (72/28/0.1) (v/v/v) containing 2.50 mM ammonium acetate. Mass spectrometric detection was performed using electrospray positive ionization with multiple reaction monitoring mode. This method was validated from 0.250 to 100 ng mL−1 for temsirolimus and 0.100 to 40.0 ng mL−1 for sirolimus. The lower limits of quantitation were 0.25 ng mL−1 for temsirolimus and 0.1 ng mL−1 for sirolimus. The intra-day and inter-day precisions (CV %) of spiked quality control (QC) samples were less than 10.4 and 9.6 %, respectively. The accuracies as determined by the relative error for QC samples were less than 12.1 % for intra-day and 7.3 % for inter-day. No significant matrix effect was observed. This method has been successfully applied to analyze clinical pharmacokinetic study samples. The assay reproducibility was also demonstrated by using incurred samples. 相似文献
5.
A simple, fast and sensitive LC?CMS/MS method was developed and validated for the simultaneous determination of the concentrations of temsirolimus and its major metabolite, sirolimus, in human whole blood. The blood sample (100???L) after adding temsirolimus- d7 and sirolimus- d3 internal standards was precipitated with 0.200?mL of methanol/0.300?M zinc sulfate (70/30, v/v), then analyzed by a Shimatzu LC system coupled to a Sciex API-5000 mass spectrometer. The chromatographic separation was carried out on a BDS Hypersil C8 column (50?×?3.0?mm, 5???m) at 50?°C with a mobile phase composed of methanol/water/formic acid (72/28/0.1) (v/v/v) containing 2.50?mM ammonium acetate. Mass spectrometric detection was performed using electrospray positive ionization with multiple reaction monitoring mode. This method was validated from 0.250 to 100?ng?mL ?1 for temsirolimus and 0.100 to 40.0?ng?mL ?1 for sirolimus. The lower limits of quantitation were 0.25?ng?mL ?1 for temsirolimus and 0.1?ng?mL ?1 for sirolimus. The intra-day and inter-day precisions (CV?%) of spiked quality control (QC) samples were less than 10.4 and 9.6?%, respectively. The accuracies as determined by the relative error for QC samples were less than 12.1?% for intra-day and 7.3?% for inter-day. No significant matrix effect was observed. This method has been successfully applied to analyze clinical pharmacokinetic study samples. The assay reproducibility was also demonstrated by using incurred samples. 相似文献
6.
A simple, rapid, specific and sensitive liquid chromatography–tandem mass spectrometric method has been developed and validated for the simultaneous estimation of alfuzosin and dutasteride in human plasma. Both alfuzosin and dutasteride were extracted from human plasma by solid-phase extraction using terazosin and finasteride as the internal standards for alfuzosin and dutasteride, respectively. Chromatographic separation of analytes and their respective internal standards was carried out using a Hypurity C18 (50 × 4.6 mm i.d., 5 μm particle size) column followed by detection using an applied biosystems API 5000 mass spectrometer with a UPLC as the front end. The method involves a rapid solid phase extraction from plasma, simple isocratic chromatographic conditions and mass spectrometric detection in the positive ionization mode using multiple reactions monitoring that enables detection down to low nanogram levels with a total run time of 2.5 min only. The method was validated over a range of 0.25–20.0 ng mL ?1 for alfuzosin and 0.1–10.0 ng mL ?1 for dutasteride. The absolute recoveries for alfuzosin (65.57%), dutasteride (103.82%), terazosin (69.38%) and finasteride (102.25%) achieved from spiked plasma samples were consistent and reproducible. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. Due to the short run time of 2.5 min it was possible to analyze a throughput of more than 180 human plasma samples per day. The validated method can be successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailabilty or bioequivalence studies. As an example the application of this validated method to a bioequivalence study is also illustrated. 相似文献
7.
A sensitive and selective liquid chromatographic tandem mass spectrometric (LC–MS–MS) method was developed for simultaneous identification and quantification of tamsulosin and dutasteride in human plasma, which was well applied to clinical study. The method was based on liquid–liquid extraction, followed by an LC procedure with a Gemini C-18, 50 mm × 2.0 mm (3 μm) column and using methanol:ammonium formate (97:3, v/ v) as the mobile phase. Protonated ions formed by a turbo ionspray in positive mode were used to detect analytes and internal standard. MS–MS detection was by monitoring the fragmentation of 409.1 → 228.1 ( m/ z) for tamsulosin, 529.3 → 461.3 ( m/ z) for dutasteride and 373.2 → 305.3 ( m/ z) for finasteride (IS) on a triple quadrupole mass spectrometer. The lower limit of quantification for both tamsulosin and dutasteride was 1 ng mL ?1. The proposed method enables the unambiguous identification and quantification of tamsulosin and dutasteride for clinical drug monitoring. 相似文献
8.
A simple, sensitive, selective and rapid liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous separation and quantitation of atenolol and chlorthalidone in human plasma using metoprolol and hydrochlorothiazide as internal standard. Following solid phase extraction, the analytes were separated by an isocratic mobile phase on a reversed-phase C 18 column and analyzed by MS in the multiple reaction-monitoring mode (atenolol in positive and chlorthalidone in the negative ion mode). The limit of quantitation for this method was 10 and 15 ng mL ?1 and the linear dynamic range was generally 10–2,050 ng mL ?1 and 15–3,035 ng mL ?1 for atenolol and chlorthalidone, respectively. 相似文献
9.
Cortisol homeostasis is implicated in hypertension and metabolic syndrome. Two enzymes modulate cortisol availability; 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) preferentially converts inactive cortisone to cortisol, whereas 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) converts cortisol to cortisone. In contrast, 5α and 5β reductases inactivate cortisol by conversion to its tetrahydrometabolites: tetrahydrocortisol, allo-tetrahydrocortisol and tetrahydrocortisone. A subtle local increase in cortisol can be detected by measuring 24-h urine metabolites, LC–MS/MS being the reference method. The 11β-HSD2 activity is assessed based on the cortisol/cortisone ratio, and the 11β-HSD1 activity on the (tetrahydrocortisol + allo-tetrahydrocortisol)/tetrahydrocortisone ratio. To better understand hypertension and/or metabolic syndrome pathogenesis a method for simultaneous determination of cortisol, cortisone, tetrahydrocortisol, allo-tetrahydrocortisol and tetrahydrocortisone was developed and validated in an LC coupled with the new detector AB Sciex QTrap ® 4500 tandem mass spectrometer. The steroids were extracted from 1 mL urine, using cortisol-D4 as internal standard. The quantification range was 0.1–120 ng/mL for cortisol and cortisone, and 1–120 ng/mL for tetrahydrometabolites, with >89 % recovery for all analytes. The coefficient of variation and accuracy was <10 %, and 85–105 %, respectively. Our LC–MS/MS method is accurate and reproducible in accordance with Food and Drug Administration guidelines, showing good sensitivity and recovery. This method allows the assessment of 11β-HSD2 and 11β-HSD1 activities in a single analytical run providing an innovative tool to explain etiology of misclassified essential hypertension and/or metabolic syndrome. 相似文献
10.
Inositol phosphates (InsPs) have important biological functions and multiple nutritional effects. Breeding and nutrition studies of InsPs require a simple, rapid, and accurate method for high-throughput quantification. Here, we developed an ion-pair chromatography/tandem mass spectrometry (IPC/ESI–MS/MS) method for the simultaneous separation and determination of each InsP. A highly volatile ion-pair reagent (dihexylammonium acetate, DHAA) was applied to separate InsP 1–InsP 6, which were then quantified by multiple reaction monitoring (MRM) in negative ESI mode. This method could simultaneously detect InsP 1–InsP 6 within 15 min and exhibited a wide linearity (typically 0.3–1200 pmol). The lower limit of detection was 0.3 pmol for all InsPs, excluding InsP 2 (0.15 pmol) and InsP 6 (3 pmol). The method accuracy of all analytes ranged between 87 and 111% with the inter- and intra-day precision of 0.9–15 and 2.2–11%, respectively. This method was successfully applied to quantitate InsPs in different types of crop seeds, organs, and a maize inbred germplasm collection composed of hundreds of inbred lines, showing its potential for promoting the nutrition and genetic research of InsPs. 相似文献
11.
A sensitive and rapid derivatization method for the simultaneous determination of chloropropanols [1,3-dichloropropan-2-ol (1,3-DCP), 2,3-dichloropropan-1-ol (2,3-DCP) and 3-chloropropane-1,2-diol (3-MCPD)] has been developed. The three chloropropanols were silylated with 1-trimethylsilylimidazole and then determined by GC–MS. n-Undecane was used as the internal standard. The limits of detection (LOD) were 0.20, 0.10, 0.14 μg kg ?1 for 1,3-DCP, 2,3-DCP and 3-MCPD, respectively. The three compounds behaved >0.999 of linearity and satisfactory precision with the relative standard deviation (RSD) <10%. The excellent validation data suggested that this method was more effective than heptafluorobutyrylimidazole derivatization, and 1-trimethylsilylimidazole was considered as a promising silylating reagent to be widely applied to measurements of chloropropanols in real samples. 相似文献
12.
A rapid and sensitive liquid chromatographic–tandem mass spectrometric method has been developed and validated for the estimation of sarpogrelate in human plasma. Sarpogrelate was extracted from human plasma by solid-phase extraction. Temocapril was used as the internal standard. Heated electron spray ionization mass spectrometry was performed on a TSQ Quantum Ultra MS system. The LC column was a Hypurity C 18 and the mobile phase was 2 mM ammonium formate (pH 3.00 ± 0.05):acetonitrile (30:70 v/ v). A flow rate of 0.250 mL min ?1 was used. The quantitative analyses were carried out in the positive ion and full scan mode over the mass range m/ z 60–500. The capillary, vaporiser temperatures were 325 and 200 °C respectively. The sheath gas pressure, spray voltage, collision energy and tube lense were 40, 3,500 V, 19 V, 198 V, respectively, and the mass spectra of the drugs were recorded by total ion monitoring. Retention times and characteristic mass fragments were recorded and the chosen diagnostic mass fragments were monitored in the mass chromatography mode. Signal intensities of each of the mass fragments: m/ z 477 [M + H] + for temocapril, m/ z 430 [M + H] + for sarpogrelate, were used for quantification. The calibration curves (the ratio between the peak areas as signal intensities of the drug analyzed and that of the internal standard (temocapril: m/ z 477 [M + H] +) vs. the concentration of drug) exhibited linearity over the concentration range 5.00–2,500.00 ng mL ?1 human plasma. The recovery and the accuracy were calculated by comparing the peak areas as the signal intensities of each mass fragment for the drug in spiked samples after solid-phase extraction from human plasma to the peak area as the signal intensity of the mass fragment of internal standard sample. The method involves a rapid solid phase extraction from plasma, simple isocratic chromatography conditions and mass spectrometric detection that enables detection up to picogram levels with a total run time of 3.0 min only. The method was validated over the range of 5.0–2,500.0 ng mL ?1. The absolute recoveries for sarpogrelate (93.72%) and IS (91.42%) achieved from spiked plasma samples were consistent and reproducible. 相似文献
14.
A rapid, reliable and sensitive method has been developed to determine malic and citric acid in fruits and vegetables. The methodology is based on simple extraction with an aqueous solution of ethanol (80% v/v) and subsequent chromatographic analysis by liquid chromatography coupled to mass spectrometry. Electrospray ionization in negative mode was used. The best response for citric and malic acid was provided by molecular ions [M?H] ? at m/z 191 and 133 respectively. These ions were used for quantification, whereas other fragments were used as confirmation ions. Different variables involved in the separation and detection process, such as mobile phase, gradient profile and flow rate have been optimised. Linearity, repeatability, recovery and limits of quantification were evaluated. Good linearity was obtained up to 5,000 mg kg ?1. Recovery ranged from 90.0 to 104.6%, repeatability (expressed as RSD) was <8% for tested matrices, and limits of quantification were equal or lower than 65 mg kg ?1. Finally, the method was applied to the analysis of samples of orange, tomato and pepper. 相似文献
15.
A liquid chromatographic-tandem mass spectrometric method for the simultaneous determination of anabolic androgenic steroids and their esters in hair has been developed. The hair sample was treated with methanol to extract the esters, followed by alkaline digestion for optimum recovery of the anabolic androgenic steroids. After liquid–liquid extractions, the extract was dried, redissolved and analyzed by multiple reaction monitoring with a quadrupole mass spectrometer. The lower limits of detection ranged from 0.001 to 0.020 ng mg ?1 for the 21 analytes. The applicability of the method was demonstrated using guinea pig hair samples gained from controlled experiments. 相似文献
16.
A sensitive and selective method for simultaneous determination of 29 toxic alkaloids in human blood and 31 in urine using high-performance liquid chromatography–electrospray ionization-tandem mass spectrometry was developed and validated. The samples were diluted with 0.1 mol L−1 HCl, and the target alkaloids were purified by solid phase extraction. The separation of 31 alkaloids was carried out on a C18 column using a gradient mobile phase with 10 mmol L−1 ammonium formate in water with 0.1% formic acid and methanol at the rate of 0.25 mL min−1. The triple-quadrupole mass spectrometer equipped with an electrospray source in the positive mode was set up in the dynamic multiple reactions monitoring mode (dynamic MRM) to detect the ion transitions of 31 alkaloids. The calibration curves were linear over a range of 0.5–400, 1–400, or 4–400 μg L−1 for target alkaloids in human blood and urine, and the correlation coefficients (r
2) was higher than 0.9943. The limit of determination and limit of quantification were 0.2–1 and 0.5–4 μg L−1 for blood and urine, respectively. The only exceptions were sanguinarine and chelerythrine in human blood. All the target alkaloids were stable under the test condition. In addition, the solvent effect and reconstituted solution were investigated. The method was validated and proved to be accurate and precise over the studied concentrations and suitable for poisoning diagnosis and forensic toxicology. 相似文献
17.
A rapid and sensitive analytical method for the simultaneous determination of four fluoroquinolones, four tetracyclines and six sulfonamides in chicken muscle using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC–MS–MS) has been developed and validated. Samples were extracted with McIlvaine buffer-acetonitrile, defatted with n-hexane, and analyzed by UPLC–MS–MS. Solvent delay technique was applied in the analysis to remove the non-volatile phosphate and carry out farther on-line SPE clean-up. Satisfactory recoveries (55–110%) of all the veterinary drugs were demonstrated in 1, 10 and 20 μg kg ?1 spiked levels with the overall RSD for intra- and inter-day of 14 analytes less than 18%. The LOD and LOQ were 0.3 and 1.0 μg kg ?1, respectively. Quantitative results of 103 real samples indicated that the present method was suitable for the quantitative analysis of real samples. 相似文献
18.
A method based on liquid chromatography tandem mass spectrometry was developed for the direct determination of nicotine, cotinine, trans-3′-hydroxycotinine, their corresponding glucuronide conjugates as well as nornicotine, norcotinine, cotinine- N-oxide and nicotine- N′ -oxide in the urine of smokers. The assay only involves centrifugation and filtration of diluted urine. The analysis was performed on a C18 reversed-phase column using a gradient of 10 mM ammonium acetate, pH 6.8, and methanol as mobile phase at a flow rate of 1 mL min ?1. Nicotine-methyl-d 3, Cotinine-methyl-d 3 and trans-3′-hydroxycotinine-methyl-d 3 were used as internal standards. Precisions (RSD) for all the analytes at three levels were between 2.1 and 17.0%. Recoveries for nicotine and nine nicotine metabolites ranged from 78.4 to 115.6%. The described method was suitable for determining the nicotine dose in large-scale human biomonitoring studies. 相似文献
19.
The purpose of this article was to develop a rapid and robust LC–MS–MS method for quantifying shikonin and deoxyshikonin simultaneously in rat plasma using emodin as internal standard. The LC system consisted of an Agilent ZORBAX SB-C18 (1.8 μm, 250 × 4.6 mm, 20 °C) column. Elution with an isocratic mobile phase consisted of methanol/10 mM ammonium acetate in water/acetonitrile containing 0.05% formic acid (45:10:45, v/v/v) at a flow rate of 0.8 mL min ?1 yielded sharp, high-resolved peaks within 12 min. The lower limits of quantitation were 0.5 ng mL ?1 for shikonin, and 8 ng mL ?1 for deoxyshikonin. Correlation coefficient ( r) values for the linear range of two analytes were greater than 0.99. Assay precision was <13% and accuracy was 87–99%. This newly developed method was used to the pharmacokinetic studies of the shikonin analogues in rats after intravenous administration ( n = 4). 相似文献
20.
A rapid, simple, sensitive and specific liquid chromatography–tandem mass spectrometry method was developed and validated for simultaneous quantification of itopride hydrochloride and domperidone in human plasma. Both drugs were extracted by liquid–liquid extraction with ethyl acetate and saturated borax solution. The chromatographic separation was performed on a reversed-phase C18 column with a mobile phase of water–methanol (2:98, v/ v) containing 0.5% formic acid. The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The assay exhibited linearity over the concentration range of 3.33–500 ng mL ?1 for itopride hydrochloride and 3.33–100 ng mL ?1 for domperidone in human plasma. The precursor to product ion transitions of m/ z 359.1–72.3 and 426.0–147.2 were used to measure itopride hydrochloride and domperidone respectively. The method was found suitable for the analysis of plasma samples collected during phase 1 pharmacokinetics study of itopride HCl 50 mg and domperidone 20 mg in 12 healthy volunteers after single oral doses of the combination drug. 相似文献
|