首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
Herein, we report an addition to the toolbox for the monitoring and quantification of the hydrolytic decay of pentose-1-phosphates, which are known to be elusive and difficult to quantify. This communication describes how apparent equilibrium shifts of a nucleoside phosphorolysis reaction can be employed to calculate hydrolytic loss of pentose-1-phosphates based on the measurement of post-hydrolysis equilibrium concentrations of a nucleoside and a nucleobase. To demonstrate this approach, we assessed the stability of the relatively stable ribose-1-phosphate at 98 °C and found half-lives of 1.8–11.7 h depending on the medium pH. This approach can be extended to other sugar phosphates and related reaction systems to quantify the stability of UV-inactive and hard-to-detect reaction products and intermediates.  相似文献   

2.

Ligand substitution of trans-[CoIII(en)2(Me)H2O]2+ was studied for pyrazole, 1,2,4-triazole and N-acetylimidazole as entering nucleophiles. These displace the coordinated H2O molecule trans to the methyl group to form trans-[Co(en)2(Me)azole]. Stability constants at 18°C for the substitution of H2O by pyrazole, 1,2,4-triazole and N-acetylimidazole are 0.7 ± 0.1, 13.8 ± 1.4 and 1.7 ± 0.2 M?1, respectively. Second order rate constants at the same temperature for the reaction of trans-[CoIII(en)2(Me)H2O]2+ with pyrazole, 1,2,4-triazole and N-acetylimidazole are 161 ± 12, 212 ± 11 and 12.9 ± 1.6 M?1 s?1, respectively. Activation parameters (ΔH, ΔS) are 67 ± 6 kJ mol?1, + 27 ± 19 J K?1 mol?1; 59 ± 2 kJ mol?1, + 1 ± 6 J K?1 mol?1 and 72 ± 4 kJ mol?1, + 23 ± 14 J K?1 mol?1 for reactions with pyrazole, 1,2,4-triazole and N-acetylimidazole, respectively. Substitution of coordinated H2O by azoles follows an Id mechanism.  相似文献   

3.
The formation equilibria of the [Pt(SMC)(H2O)2]+ complex with some biologically relevant ligands such as L-methionine (L-met) and glutathione (GSH) were studied. The stoichiometry and stability constants of the formed complexes are reported, and the concentration distribution of the various complex species has been evaluated as a function of pH. The reaction between [PtCl2(SMC)] and guanosine-5′-monophosphate (5′-GMP) was studied by 1H NMR spectroscopy. The NMR spectra indicated that first step is the hydrolysis of the [PtCl2(SMC)] complex and second step is the substitution of an aqua ligand, either in the cis or trans position with guanosine-5′-monophosphate in molar ratio 1:1. The values of rate constant showed faster substitution of coordinated H2O in the trans position to the S donor atom of S-methyl-L-cysteine, whereas the slower reaction was assigned to the displacement of the cis coordinated aqua molecule. This is due to the strong trans labilization effect of coordinated sulfur. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号